Skip to main content
Log in

Mixed \(H_{\infty }\) and Passivity Performance for Delayed Conformable Fractional-Order Neural Networks

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This article considers the problems of uniform asymptotic stability and mixed \(H_{\infty }\) and passivity performance for conformable fractional-order uncertain neural networks with time delays. We first present a modified conformable fractional-order Razumikhin theorem for conformable fractional-order systems with time delays. Then, we derive some sufficient conditions in terms of linear matrix inequalities conditions to ensure that the considered system is uniform asymptotic stable with mixed \(H_{\infty }\) and passivity performance levels by employing the conformable fractional-order Razumikhin approach. Two simulation examples confirm the correctness of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. F. Abid, L. Hamami, A survey of neural network based automated systems for human chromosome classification. Artif. Intell. Rev. 49(1), 41–56 (2018)

    Google Scholar 

  2. C.Z. Aguilar, J.F. Gómez-Aguilar, V.M. Alvarado-Martínez, H.M. Romero-Ugalde, Fractional order neural networks for system identification. Chaos Solitons Fractals 130, 109444 (2020)

    MathSciNet  MATH  Google Scholar 

  3. R.V. Aravind, P. Balasubramaniam, Global asymptotic stability of delayed fractional-order complex-valued fuzzy cellular neural networks with impulsive disturbances. J. Appl. Math. Comput. 68, 4713–4731 (2022)

    MathSciNet  MATH  Google Scholar 

  4. P. Balasubramaniam, S. Lakshmanan, LMI conditions for robust stability analysis of stochastic Hopfield neural networks with interval time-varying delays and linear fractional uncertainties. Circuits Syst. Signal Process. 30(5), 1011–1028 (2011)

    MathSciNet  MATH  Google Scholar 

  5. M. Bohner, V.F. Hatipoǧlu, Dynamic cobweb models with conformable fractional derivatives. Nonlinear Anal. Hybrid Syst 32, 157–167 (2019)

    MathSciNet  MATH  Google Scholar 

  6. A. Boroomand, M.B. Menhaj, Fractional-order Hopfield neural networks, in Advances in Neuroinformation Processing ICONIP 2008. Lecture Notes in Computer Science 5506, pp. 883–890 (2009)

  7. Y. Chen, L. Yang, A. Xue, Finite-time passivity of stochastic Markov jump neural networks with random distributed delays and sensor nonlinearities. Circuits Syst. Signal Process. 38(6), 2422–2444 (2019)

    Google Scholar 

  8. J. Chen, C. Lin, B. Chen, Q.G. Wang, Mixed \(H_{\infty }\) and passive control for singular systems with time delay via static output feedback. Appl. Math. Comput. 293, 244–253 (2017)

    MathSciNet  MATH  Google Scholar 

  9. X. Chu, L. Xu, H. Hu, Exponential quasi-synchronization of conformable fractional-order complex dynamical networks. Chaos Solitons Fractals 140, 110268 (2020)

    MathSciNet  MATH  Google Scholar 

  10. Z. Ding, Z. Zeng, H. Zhang, L. Wang, L. Wang, New results on passivity of fractional-order uncertain neural networks. Neurocomputing 351, 51–59 (2019)

    Google Scholar 

  11. Z. Ding, Y. Shen, Global dissipativity of fractional-order neural networks with time delays and discontinuous activations. Neurocomputing 196, 159–166 (2016)

    Google Scholar 

  12. P. Gahinet, A. Nemirovskii, A.J. Laub, M. Chilali, LMI Control Toolbox for Use with MATLAB (The MathWorks, Natick, 1995)

    Google Scholar 

  13. N.T.T. Huyen, N.H. Sau, M.V. Thuan, LMI conditions for fractional exponential stability and passivity analysis of uncertain Hopfield conformable fractional-order neural networks. Neural Process. Lett. 54(2), 1333–1350 (2022)

    Google Scholar 

  14. D.T. Hong, N.H. Sau, M.V. Thuan, New criteria for dissipativity analysis of fractional-order static neural networks. Circuits Syst. Signal Process. 41(4), 2221–2243 (2022)

    MATH  Google Scholar 

  15. D.C. Huong, M.V. Thuan, Mixed \(H_{\infty }\) and passive control for fractional-order nonlinear systems via LMI approach. Acta Appl. Math. 170(1), 37–52 (2020)

    MathSciNet  MATH  Google Scholar 

  16. N. Kaewbanjak, W. Chartbupapan, K. Nonlaopon, K. Mukdasai, The Lyapunov–Razumikhin theorem for the conformable fractional system with delay. AIMS Math. 7(3), 4795–4802 (2022)

    MathSciNet  Google Scholar 

  17. R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    MathSciNet  MATH  Google Scholar 

  18. A. Kütahyalioglu, F. Karakoç, Exponential stability of Hopfield neural networks with conformable fractional derivative. Neurocomputing 456, 263–267 (2021)

    MATH  Google Scholar 

  19. F. Li, S. Song, J. Zhao, S. Xu, Z. Zhang, Synchronization control for Markov jump neural networks subject to HMM observation and partially known detection probabilities. Appl. Math. Comput. 360, 1–13 (2019)

    MathSciNet  MATH  Google Scholar 

  20. X. Li, K. She, K. Shi, J. Cheng, Y. Yu, Z. Peng, On event-triggered guaranteed cost control for discrete-time semi-Markovian neural networks having communication delays and dual-terminal probabilistic faults. Int. J. Robust Nonlinear Control. 32(16), 8804–8841 (2022)

    MathSciNet  Google Scholar 

  21. X. Liu, D. Tong, Q. Chen, W. Zhou, S. Shen, Observer-based adaptive funnel dynamic surface control for nonlinear systems with unknown control coefficients and hysteresis input. Neural Process. Lett. 54, 4681–4710 (2022)

    Google Scholar 

  22. V.T. Mai, T.H.T. Nguyen, H.S. Nguyen, T.T.H. Nguyen, New results on \(H_{\infty }\) control for nonlinear conformable fractional order systems. J. Syst. Sci. Complex. 34(1), 140–156 (2021)

    MathSciNet  MATH  Google Scholar 

  23. K. Mathiyalagan, J.H. Park, R. Sakthivel, S.M. Anthoni, Robust mixed \(H_{\infty }\) and passive filtering for networked Markov jump systems with impulses. Signal Process. 101, 162–173 (2014)

    Google Scholar 

  24. O. Naifar, G. Rebiai, A.B. Makhlouf, M.A. Hammami, A. Guezane-Lakoud, Stability analysis of conformable fractional-order nonlinear systems depending on a parameter. J. Appl. Anal. 26(2), 287–296 (2020)

    MathSciNet  MATH  Google Scholar 

  25. N. Padmaja, P.G. Balasubramaniam, Stability with mixed \(H_{\infty }/\)passivity performance analysis of fractional-order neutral delayed Markovian jumping neural networks. Int. J. Nonlinear Sci. Numer. Simul. (2022). https://doi.org/10.1515/ijnsns-2021-0447

    Article  MATH  Google Scholar 

  26. N. Padmaja, P. Balasubramaniam, Mixed \(H_{\infty }\)/passivity based stability analysis of fractional-order gene regulatory networks with variable delays. Math. Comput. Simul. 192, 167–181 (2022)

    MathSciNet  MATH  Google Scholar 

  27. R. Sakthivel, M. Joby, K. Mathiyalagan, S. Santra, Mixed \(H_{\infty }\) and passive control for singular Markovian jump systems with time delays. J. Franklin Inst. 352(10), 4446–4466 (2015)

    MathSciNet  MATH  Google Scholar 

  28. N.H. Sau, M.V. Thuan, N.T.T. Huyen, Passivity analysis of fractional-order neural networks with time-varying delay based on LMI approach. Circuits Syst. Signal Process. 39(12), 5906–5925 (2020)

    Google Scholar 

  29. A. Souahi, A.B. Makhlouf, M.A. Hammami, Stability analysis of conformable fractional-order nonlinear systems. Indag. Math. 28(6), 1265–1274 (2017)

    MathSciNet  MATH  Google Scholar 

  30. G. Tan, Z. Wang, Reachable set estimation of delayed Markovian jump neural networks based on an improved reciprocally convex inequality. IEEE Trans. Neural Netw. Learn. Syst. 33(6), 2737–2742 (2022)

    MathSciNet  Google Scholar 

  31. N.E. Tatar, Fractional Halanay inequality and application in neural network theory. Acta Mathematica Scientia 39(6), 1605–1618 (2019)

    MathSciNet  MATH  Google Scholar 

  32. N.T. Thanh, P. Niamsup, V.N. Phat, New results on finite-time stability of fractional-order neural networks with time-varying delay. Neural Comput. Appl. 33(24), 17489–17496 (2021)

    Google Scholar 

  33. M.V. Thuan, N.T.H. Thu, N.H. Sau, N.T.T. Huyen, New results on \(H_{\infty }\) control for nonlinear conformable fractional order systems. J. Syst. Sci. Complex. 34(1), 140–156 (2020)

    MathSciNet  MATH  Google Scholar 

  34. M.V. Thuan, N.H. Sau, N.T.T. Huyen, Finite-time \(H_{\infty }\) control of uncertain fractional-order neural networks. Comput. Appl. Math. 39(59), 1–18 (2020)

    MathSciNet  MATH  Google Scholar 

  35. M.V. Thuan, D.C. Huong, D.T. Hong, New results on robust finite-time passivity for fractional-order neural networks with uncertainties. Neural Process. Lett. 50(2), 1065–1078 (2019)

    Google Scholar 

  36. D. Tong, X. Liu, Q. Chen, W. Zhou, K. Liao, Observer-based adaptive finite-time prescribed performance NN control for nonstrict-feedback nonlinear systems. Neural Comput. Appl. 34, 12789–12805 (2022)

    Google Scholar 

  37. K. Udhayakumar, F.A. Rihan, R. Rakkiyappan, R. Cao, Fractional-order discontinuous systems with indefinite LKFs: An application to fractional-order neural networks with time delays. Neural Netw. 145, 319–330 (2022)

    Google Scholar 

  38. J. Wang, M. Xing, J. Cao, J.H. Park, H. Shen, \(H_{\infty }\) bipartite synchronization of double-layer Markov switched cooperation-competition neural networks: a distributed dynamic event-triggered mechanism. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3093700

    Article  Google Scholar 

  39. Z. Wei, H. Li, Y. Ma, Observer-based mixed \(H_{\infty }\)/passive adaptive sliding mode control for Semi-Markovian jump system with time-varying delay. Comput. Appl. Math. 40(8), 1–25 (2021)

    MathSciNet  MATH  Google Scholar 

  40. R.C. Wu, X.D. Hei, L.P. Chen, Finite-time stability of fractional-order neural networks with delay. Commun. Theor. Phys. 60(2), 189 (2013)

    MathSciNet  MATH  Google Scholar 

  41. C. Xu, D. Tong, Q. Chen, W. Zhou, P. Shi, Exponential stability of Markovian jumping systems via adaptive sliding mode control. IEEE Trans. Syst. Man Cybernet. Syst. 51(2), 954–964 (2019)

    Google Scholar 

  42. Y. Yang, Y. He, Y. Wang, M. Wu, Stability analysis of fractional-order neural networks: an LMI approach. Neurocomputing 285, 82–93 (2018)

    Google Scholar 

  43. X. Yang, Q. Song, Y. Liu, Z. Zhao, Finite-time stability analysis of fractional-order neural networks with delay. Neurocomputing 152, 19–26 (2015)

    Google Scholar 

  44. Z. Yang, J. Zhang, Y. Niu, Finite-time stability of fractional-order bidirectional associative memory neural networks with mixed time-varying delays. J. Appl. Math. Comput. 63, 501–522 (2020)

    MathSciNet  MATH  Google Scholar 

  45. L. Zhang, F. Wang, T. Sun, B. Xu, A constrained optimization method based on BP neural network. Neural Comput. Appl. 29(2), 413–421 (2018)

    Google Scholar 

  46. H. Zhang, R. Ye, S. Liu, J. Cao, A. Alsaedi, X. Li, LMI-based approach to stability analysis for fractional-order neural networks with discrete and distributed delays. Int. J. Syst. Sci. 49(3), 537–545 (2018)

    MathSciNet  MATH  Google Scholar 

  47. S. Zhang, Y. Yu, J. Yu, LMI conditions for global stability of fractional-order neural networks. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2423–2433 (2017)

    MathSciNet  Google Scholar 

  48. H. Zhang, M. Ye, R. Ye, J. Cao, Synchronization stability of Riemann–Liouville fractional delay-coupled complex neural networks. Physica A 508, 155–165 (2018)

    MathSciNet  MATH  Google Scholar 

  49. F. Zhang, Z. Zeng, Multistability of fractional-order neural networks with unbounded time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 177–187 (2021)

    MathSciNet  Google Scholar 

  50. Q. Zheng, Y. Ling, L. Wei, H. Zhang, Mixed \(H_{\infty }\) and passive control for linear switched systems via hybrid control approach. Int. J. Syst. Sci. 49(4), 818–832 (2018)

    MathSciNet  MATH  Google Scholar 

  51. Q. Zheng, H. Zhang, Y. Ling, X. Guo, Mixed \(H_{\infty }\) and passive control for a class of nonlinear switched systems with average dwell time via hybrid control approach. J. Franklin Inst. 355(3), 1156–1175 (2018)

    MathSciNet  MATH  Google Scholar 

  52. K. Zhou, P.P. Khargonekar, Robust stabilization of linear systems with norm-bounded time-varying uncertainty. Syst. Control Lett. 10(1), 17–20 (1988)

    MathSciNet  MATH  Google Scholar 

  53. B. Zhu, M. Suo, Y. Chen, Z. Zhang, S. Li, Mixed \(H_{\infty }\) and passivity control for a class of stochastic nonlinear sampled-data systems. J. Franklin Inst. 355(7), 3310–3329 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor(s) and anonymous reviewers for their constructive comments which helped to improve the present paper. This research was supported by Project of the TNU-University of Sciences in Vietnam under Grant Number CS2022-TN06-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mai Viet Thuan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huyen, N.T.T., Thanh, N.T., Sau, N.H. et al. Mixed \(H_{\infty }\) and Passivity Performance for Delayed Conformable Fractional-Order Neural Networks. Circuits Syst Signal Process 42, 5142–5160 (2023). https://doi.org/10.1007/s00034-023-02358-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02358-7

Keywords

Mathematics Subject Classification

Navigation