Skip to main content
Log in

Local Change Point Detection and Cleaning of EEMD Signals

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The ensemble empirical mode decomposition (EEMD) has become a preferred technique to decompose nonlinear and non-stationary signals due to its ability to create time-varying basis functions. However, current EEMD signal cleaning techniques are unable to deal with situations where a signal only occurs for a portion of the entire recording length. By combining change point detection and statistical hypothesis testing, we demonstrate how to clean a signal to emphasize unique local changes within each basis function. This not only allows us to observe which frequency bands are undergoing a change, but also leads to improved recovery of the underlying information. Using this technique, we demonstrate improved signal cleaning performance for acoustic shockwave signal detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. H. Akaike, A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974). https://doi.org/10.1109/TAC.1974.1100705

    Article  MathSciNet  MATH  Google Scholar 

  2. D.C. Bowman, J.M. Lees, The Hilbert–Huang transform: a high resolution spectral method for nonlinear and nonstationary time series. Seismol. Res. Lett. 84(6), 1074–1080 (2013). https://doi.org/10.1785/0220130025

    Article  Google Scholar 

  3. L.-W. Chang, M.-T. Lo, N. Anssari, K.-H. Hsu, N.E. Huang, W.-m.W. Hwu, Parallel implementation of multi-dimensional ensemble empirical mode decomposition, in 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2011), pp. 1621–1624. https://doi.org/10.1109/ICASSP.2011.5946808

  4. D. Chen, L. Wang, G. Ouyang, X. Li, Massively parallel neural signal processing on a many-core platform. Comput. Sci. Eng. 13(6), 42–51 (2011). https://doi.org/10.1109/MCSE.2011.20

    Article  Google Scholar 

  5. X. Chen, X. Zhang, J. Zhou, K. Zhou, Rolling bearings fault diagnosis based on tree heuristic feature selection and the dependent feature vector combined with rough sets. Appl. Sci. 9(6), 1161 (2019). https://doi.org/10.3390/app9061161

    Article  Google Scholar 

  6. X. Chen, B. Cui, Efficient modeling of fiber optic gyroscope drift using improved EEMD and extreme learning machine. Signal Process. (2016). https://doi.org/10.1016/j.sigpro.2016.03.016

    Article  Google Scholar 

  7. D.L. Donoho, I.M. Johnstone, Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994). https://doi.org/10.1093/biomet/81.3.425

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Gaci, A new ensemble empirical mode decomposition (EEMD) denoising method for seismic signals. Energy Procedia 97, 84–91 (2016). https://doi.org/10.1016/j.egypro.2016.10.026

    Article  Google Scholar 

  9. S. Holm, A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6(2), 65–70 (1979)

    MathSciNet  MATH  Google Scholar 

  10. M. Hotradat, K. Balasundaram, S. Masse, K. Nair, K. Nanthakumar, K. Umapathy, Empirical mode decomposition based ECG features in classifying and tracking ventricular arrhythmias. Comput. Biol. Med. 112, 103379 (2019). https://doi.org/10.1016/j.compbiomed.2019.103379

    Article  Google Scholar 

  11. N.E. Huang, Z. Shen, S.R. Long, A new view of nonlinear water waves: the Hilbert spectrum. Annu. Rev. Fluid Mech. 31(1), 417–457 (1999). https://doi.org/10.1146/annurev.fluid.31.1.417

    Article  MathSciNet  Google Scholar 

  12. N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.-C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454(1971), 903–995 (1998). https://doi.org/10.1098/rspa.1998.0193

    Article  MathSciNet  MATH  Google Scholar 

  13. N.E. Huang, M.-L.C. Wu, S.R. Long, S.S.P. Shen, W. Qu, P. Gloersen, K.L. Fan, A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proc. R. Soc. Ser. A 459, 2317–2345 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. N. E. Huang, S. S. P. Shen, Hilbert-Huang Transform and Its Applications (World Scientific, 2005). https://doi.org/10.1142/5862

  15. Z. Huimin, S. Meng, D. Wu, Y. Xinhua, A new feature extraction method based on EEMD and multi-scale fuzzy entropy for motor bearing. Entropy (2017). https://doi.org/10.3390/e19010014

    Article  Google Scholar 

  16. C. Inclán, G.C. Tiao, Use of cumulative sums of squares for retrospective detection of changes of variance. J. Am. Stat. Assoc. 89, 913–923 (1994)

    MathSciNet  MATH  Google Scholar 

  17. Y. Kopsinis, M. Stephen, Development of EMD-based denoising methods inspired by wavelet thresholding. IEEE Trans. Signal Process. 57, 1351–1362 (2009). https://doi.org/10.1109/TSP.2009.2013885

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Lei, M.J. Zuo, Fault diagnosis of rotating machinery using an improved HHT based on EEMD and sensitive IMFs. Meas. Sci. Technol. 20(12), 125701 (2009). https://doi.org/10.1088/0957-0233/20/12/125701

    Article  Google Scholar 

  19. T. Li, M. Zhou, C. Guo, M. Luo, J. Wu, F. Pan, Q. Tao, T. He, Forecasting crude oil price using EEMD and RVM with adaptive PSO-based kernels. Energies (2016). https://doi.org/10.3390/en9121014

    Article  Google Scholar 

  20. D. Liu, X. Yang, G. Wang, J. Ma, Y. Liu, C.K. Peng, J. Zhang, J. Fang, HHT based cardiopulmonary coupling analysis for sleep apnea detection. Sleep Med. (2012). https://doi.org/10.1016/j.sleep.2011.10.035

    Article  Google Scholar 

  21. G. Liu, Y. Luan, An adaptive integrated algorithm for noninvasive fetal ECG separation and noise reduction based on ICA-EEMD-WS. Med. Biol. Eng. Comput. 53(11), 1113–1127 (2015). https://doi.org/10.1007/s11517-015-1389-1

    Article  Google Scholar 

  22. M. Lozano, J.A. Fiz, R. Jané, Performance evaluation of the Hilbert–Huang transform for respiratory sound analysis and its application to continuous adventitious sound characterization. Signal Process. 120, 99–116 (2016). https://doi.org/10.1016/j.sigpro.2015.09.005

    Article  Google Scholar 

  23. P.T. Negraru, E.T. Herrin, On infrasound waveguides and dispersion. Seismol. Res. Lett. 80(4), 565–571 (2009). https://doi.org/10.1785/gssrl.80.4.565

    Article  Google Scholar 

  24. K. Northon, NASA Statement Regarding Oct. 28 Orbital Sciences Corp. Launch Mishap (2015). https://www.nasa.gov/press/2014/october/nasa-statement-regarding-oct-28-orbital-sciences-corp-launch-mishap

  25. G. Schwarz, Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978). https://doi.org/10.1214/aos/1176344136

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Truong, L. Oudre, N. Vayatis, Selective review of offline change point detection methods. Signal Process. 167, 107299 (2020). https://doi.org/10.1016/j.sigpro.2019.107299

    Article  Google Scholar 

  27. J. Vergoz, The Antares explosion observed by the USArray: an unprecedented collection of infrasound phases recorded from the same event. Infrasound Monit. Atmosp. Stud. (2018). https://doi.org/10.1007/978-3-319-75140-5_9

    Article  Google Scholar 

  28. T. Wang, M. Zhang, Q. Yu, H. Zhang, Comparing the applications of EMD and EEMD on time-frequency analysis of seismic signal. J. Appl. Geophys. 83, 29–34 (2012). https://doi.org/10.1016/j.jappgeo.2012.05.002

    Article  Google Scholar 

  29. W. Wang, D. Xu, X. Chen, Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water Resour. Manag. 29, 2655–2675 (2015). https://doi.org/10.1007/s11269-015-0962-6

    Article  Google Scholar 

  30. X. Wang, C. Liu, F. Bi, X. Bi, K. Shao, Fault diagnosis of diesel engine based on adaptive wavelet packets and EEMD-fractal dimension. Mech. Syst. Signal Process. 41(1), 581–597 (2013). https://doi.org/10.1016/j.ymssp.2013.07.009

    Article  Google Scholar 

  31. Y.-H. Wang, C.-H. Yeh, H.-W.V. Young, K. Hu, M.-T. Lo, On the computational complexity of the empirical mode decomposition algorithm. Physica A 400, 159–167 (2014). https://doi.org/10.1016/j.physa.2014.01.020

    Article  Google Scholar 

  32. Y.-X. Wu, Q.-B. Wu, J.-Q. Zhu, Improved EEMD-based crude oil price forecasting using LSTM networks. Physica A 516, 114–124 (2019). https://doi.org/10.1016/j.physa.2018.09.120

    Article  Google Scholar 

  33. Z. Wu, N.E. Huang, Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1, 1–41 (2009)

    Article  Google Scholar 

  34. N.R. Zhang, D.O. Siegmund, A modified bayes information criterion with applications to the analysis of comparative genomic hybridization data. Biometrics 63(1), 22–32 (2007). https://doi.org/10.1111/j.1541-0420.2006.00662.x

    Article  MathSciNet  MATH  Google Scholar 

  35. J. Zheng, H. Pan, S. Yang, J. Cheng, Adaptive parameterless empirical wavelet transform based time-frequency analysis method and its application to rotor rubbing fault diagnosis. Signal Process. 130, 305–314 (2017). https://doi.org/10.1016/j.sigpro.2016.07.023

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation under Grant Nos. DMS-1613112, IIS-1633212, DMS-1916237, DMS-1929298, and DMS-2152289. All authors have no competing interests to declare that are relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Hoffman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoffman, K., Lees, J. & Zhang, K. Local Change Point Detection and Cleaning of EEMD Signals. Circuits Syst Signal Process 42, 4669–4690 (2023). https://doi.org/10.1007/s00034-023-02319-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02319-0

Keywords

Navigation