Skip to main content
Log in

Input-to-State Practical Partial h-stability of Nonlinear Non-autonomous Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we investigate the h-stability analysis with respect to part of the variables of nonlinear non-autonomous systems. With the help of the notion of practical h-stable functions, input-to-state practical partial h-stability (h-ISppS), integral input-to-state practical partial h-stability (h-iISppS) and practical partial h-stability are considered. Moreover, some sufficient Lyapunov-like conditions are derived to check the partial input-to-state practical h-stability of two important classes of nonlinear systems, namely perturbed and cascaded systems. Furthermore, two numerical examples are given to illustrate the effectiveness and the superiority of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. D. Angeli, E.D. Sontag, Y. Wang, A characterization of integral input-to-state stability. IEEE Trans. Automat. Control 45, 1082–1097 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Damak, M.A. Hammami, A. Kicha, A converse theorem on practical \(h\)-stability of nonlinear systems. Mediterr. J. Math. 17, 1–18 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Damak, N. Hadj Taieb, M.A. Hammami, On input-to-state practical \(h\)-stability for nonlinear time-varying systems. Mediterr. J. Math. 19, 1–19 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Damak, Input-to-state stability and integral input-to-state stability of non-autonomous infinite-dimensional systems. Internat. J. Systems Sci. 52(10), 2100–2113 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Damak, N. Hadj Taieb, M.A. Hammami, A practical separation principle for nonlinear non autonomous systems. Internat. J. Control. 96(1), 214–222 (2023)

  6. MYu. Filimonov, Global asymptotic stability with respect to part of the variables for solutions of systems of ordinary differential equations. Differ. Equ. 56, 710–720 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. V. Grushkovskaya, A. Zuyev, Partial stability concept in extremum seeking problems. IFAC PapersOnLine 52, 682–687 (2019)

  8. M. Malisoff, F. Mazenc, Further remarks on strict input-to-state stable Lyapunov functions for time-varying systems. Automatica J. IFAC 41, 1973–1978 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. N. Hadj Taieb, Stability analysis for time-varying nonlinear systems. Internat. J. Control 95, 1497–1506 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  10. N. Hadj Taieb, Indefinite derivative for stability of time-varying nonlinear systems. IMA J. Math. Control Inform. 38, 534–551 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Hamzaoui, N. Hadj Taieb, M.A. Hammami, Practical partial stability of time-varying systems. Discrete Contin. Dyn. Syst. Ser. B 27, 3585–3603 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Z.P. Jiang, A.R. Teel, L. Praly, Small-gain theorem for ISS systems and applications. Math. Control Signals Syst. 7, 95–120 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Z.P. Jiang, I.M.Y. Mareels, Y. Wang, A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems. Automatica J. IFAC 32, 1211–1215 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. J.W. Hagood, B.S. Thomson, Recovering a function from a dini derivative. Am. Math. Monthly 113, 34–46 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Z. Jin, J. Lee, Z. Wang, Input-to-state stability and sliding mode control of the nonlinear singularly perturbed systems via trajectory-based small-gain theorem. Nonlinear Anal. Hybrid Syst. 44, 101175 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. H.K. Khalil, Nonlinear systems. third ed. Prentice-Hall, Englewood Cliffs, NJ (2002)

  17. Y. Lin, Y. Wang, D. Cheng, On nonuniform and semi-uniform input-to-state stability for time varying systems. In Proceedings of the 16th IFAC World Congress 38, 312-317 (2005)

  18. M. Pinto, Perturbations of asymptotically stable differential equations. Analysis 4, 161–175 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Pinto, Stability of nonlinear differential system. Appl. Anal. 43, 1–20 (2007)

    Article  MathSciNet  Google Scholar 

  20. S. Peng, Y. Zhang, Some new criteria on pth moment stability of stochastic functional differential equations with markovian switching. IEEE Trans. Automat. Control 55, 2886–2890 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. V.V. Rumyantsev, Partial stability of motion. Mosk. Gos. Univ. Mat. Mekh. Fiz. Astronom. Khim. 4, 9–16 (1957)

    Google Scholar 

  22. V.V. Rumyantsev, Stability of equilibrium of a body with a liquid-filled hollow. Dokl. Akad. Nauk SSSR 124, 291–294 (1959)

    Google Scholar 

  23. V.V. Rumyantsev, Stability of rotational motion of a liquid-filled solid. Prikl. Mat. Mekh. 23, 1057–1065 (1959)

    Google Scholar 

  24. V.V. Rumyantsev, Stability of motion of a gyrostat. Prikl. Mat. Mekh. 25, 9–16 (1961)

    MathSciNet  MATH  Google Scholar 

  25. E.D. Sontag, Smooth stabilization implies coprime factorization. IEEE Trans. Automat. Control 34, 435–443 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. E.D. Sontag, Y. Wang, On characterizations of the input-to-state stability property. Syst. Control Lett. 24, 351–359 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. E.D. Sontag, Y. Wang, New characterizations of input to state stability. IEEE Trans. Automat. Control 41, 1283–1294 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. E.D. Sontag, Comments on integral variants of ISS. Syst. Control Lett. 34, 93–100 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. B. Zhou, Stability analysis of non-linear time-varying systems by lyapunov functions with indefinite derivatives. IET Control Theory Appl. 11(9), 1434–1442 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the associate editor and the anonymous reviewers for their constructive comments and suggestions which improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanen Damak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damak, H., Hadj Taieb, N. & Hammami, M.A. Input-to-State Practical Partial h-stability of Nonlinear Non-autonomous Systems. Circuits Syst Signal Process 42, 3854–3872 (2023). https://doi.org/10.1007/s00034-023-02313-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02313-6

Keywords

Mathematics Subject Classification

Navigation