Skip to main content
Log in

Variable Step-size LMS Algorithm Based on Hyperbolic Tangent Function

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

To solve the problem that the least mean square (LMS) algorithm cannot balance the convergence rate and steady-state mean square error (MSE) well and require excessive manual adjustment of parameters, this paper proposes a parameter-free variable step-size LMS algorithm based on the hyperbolic tangent function. First, the algorithm uses the hyperbolic tangent function to establish a nonlinear relationship between the error and the step size. Based on this, the average value of the error signal is used to update the step size. Further, the accumulated error value is multiplied by its average value and added to the input signal energy. Then, the algorithm is normalized by using this value to prevent the algorithm divergence due to the sudden increase in the signal power. The convergence proof of the proposed algorithm is provided in this paper. The simulation results indicate that the proposed algorithm can automatically adjust the parameters. The convergence rate and the steady-state MSE are better than those of other algorithms for both high and low signal-to-noise ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  1. W.P. Ang, B.F. Boroujeny, A new class of gradient adaptive step-size LMS algorithms. IEEE Trans. Signal Process. 49(4), 805–810 (2001). https://doi.org/10.1109/78.912925

    Article  Google Scholar 

  2. F. Albu, J. Kadlec, N. Coleman, A. Fagan, The Gauss–Seidel Fast Affine Projection Algorithm. in Signal Processing Systems, (SIPS '02). IEEE Workshop on 16-18 Oct, 2002, pp. 109–114

  3. F. Albu, C. Paleologu, S. Ciochina, New Variable Step Size Affine Projection Algorithms, in 2012 9th International Conference on Communications, COMM 2012–Conference Proceedings, (IEEE, 2012). https://doi.org/10.1109/ICComm.2012.6262602

  4. T. Aboulnasr, K. Mayyas, A robust variable step-size LMS-type algorithm: analysis and simulations. IEEE Trans. Signal Process. 45(3), 631–631 (1997). https://doi.org/10.1109/78.558478

    Article  Google Scholar 

  5. A. Benveniste, M. Metivier, P. Priouret, Adaptive Algorithms and Stochastic Approximation (Springer, New York, 2012)

    MATH  Google Scholar 

  6. J. Benesty, H. Rey, L.R. Vega et al., A nonparametric VSS NLMS algorithm. IEEE Signal Process. Lett. 13(10), 581–584 (2006). https://doi.org/10.1109/LSP.2006.876323

    Article  Google Scholar 

  7. H.H. Chang, L. Junghsi, A new variable step-size NLMS algorithm and its performance analysis. IEEE Trans. Signal Process. 60(4), 2055–2060 (2012). https://doi.org/10.1109/tsp.2011.2181505

    Article  MathSciNet  MATH  Google Scholar 

  8. Y.R. Chien, W.J. Tseng, Switching-based variable step-size approach for partial update LMS algorithms. Electron. Lett. 49, 1081–1083 (2013). https://doi.org/10.1049/el.2013.1762

    Article  Google Scholar 

  9. J.M. Górriz, J. Ramírez, S. Cruces-Alvarez et al., Speech enhancement in discontinuous transmission systems using the constrained-stability least-mean-squares algorithm. Acoust. Soc. Am. 124(6), 36693683 (2008). https://doi.org/10.1121/1.3003933

    Article  Google Scholar 

  10. S.L. Gay, S. Tavathia, The fast affine projection algorithm. Acoust. Speech Signal Process. 5, 3023–3026 (1995). https://doi.org/10.1007/978-1-4419-8644-3_2

    Article  Google Scholar 

  11. S. Guan, Z. Li, Z.H. Ru, New Variable Step-size of l1-LMS Algorithm, in International Conference on Signal Processing Systems, (ACM, 2016). https://doi.org/10.1145/3015166.3015198

  12. L.Y. Jin, Y.R. Chien, Y. Tsao, Rapid converging M-Max partial update least mean square algorithms with new variable step-size methods. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 98(12), 2650–2657 (2015). https://doi.org/10.1587/transfun.e98.a.2650

    Article  Google Scholar 

  13. B. Jalal, X. Yang, Q. Liu, T. Long et al., Fast and robust variable-step-size lms algorithm for adaptive beamforming. IEEE Antennas Wirel. Propag. Lett. 19(7), 1206–1210 (2020). https://doi.org/10.1109/LAWP.2020.2995244

    Article  Google Scholar 

  14. R.H. Kwong, E.W. Johnston, A variable step-size LMS algorithm. IEEE Trans. Signal Process. 40(7), 1633–1642 (1992). https://doi.org/10.1109/tcs.1986.1085982

    Article  MATH  Google Scholar 

  15. Z.S. Kui, M.Z. Hong, K.S. Yang, A fast variable step-size LMS algorithm with system identification. IEEE Conf. Ind. Electron. Appl. (2007). https://doi.org/10.1109/iciea.2007.4318828

    Article  Google Scholar 

  16. K. Kumar, N.V. George, Weibull M-transform least mean square algorithm. Appl. Acoust. 2020, 170 (2020). https://doi.org/10.1016/j.apacoust.2020.107488

    Article  Google Scholar 

  17. E.M. Lobato, O.J. Tobias, R. Seara, Stochastic modeling of the transform-domain εLMS algorithm for correlated Gaussian data. IEEE Trans. Signal Process. 56, 1840–1852 (2008). https://doi.org/10.1109/ITS.2006.4433401

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Li, L. Li, H.M. Tai, Variable step size LMS algorithm based on function control. Circ. Syst. Signal Process. 32(6), 3121–3130 (2013). https://doi.org/10.1007/s00034-013-9598-z

    Article  MathSciNet  Google Scholar 

  19. W. Mikhael, F. Wu et al., Adaptive filters with individual adaptation of parameters. Circ. Syst. IEEE Trans. (1986). https://doi.org/10.1109/TCS.1986.1085982

    Article  Google Scholar 

  20. V.H. Nascimento, The Normalized LMS Algorithm with Dependent Noise, in Anais do 19° Simpòsio Brasileiro de Telecomunicações Fortaleza, (Brazil, 2001)

  21. S.H. Pauline, D. Samiappan, R. Kumar et al., Variable tap-length non-parametric variable step-size NLMS adaptive filtering algorithm for acoustic echo cancellation. Appl. Acoust. 159, 107074 (2020). https://doi.org/10.1016/j.apacoust.2019.107074

    Article  Google Scholar 

  22. D.T.M. Slock, On the convergence behavior of the LMS and the normalized LMS algorithms. IEEE Trans. Signal Process. 41, 2811–2825 (1993). https://doi.org/10.1109/78.236504

    Article  MATH  Google Scholar 

  23. K. Shi, X. Ma, A variable-step-size NLMS algorithm using statistics of channel response. Signal Process. 90(6), 2107–2111 (2010). https://doi.org/10.1016/j.sigpro.2010.01.015

    Article  MATH  Google Scholar 

  24. B.C. Widrow, M.E. Hoff, Adaptive switching circuits, 1988

  25. G. Wang, H. Zhao, P. Song, Robust variable step-size reweighted zero-attracting least mean M-Estimate algorithm for sparse system identification. IEEE Trans. Circ. Syst. II Exp. Briefs 67(6), 1149–1153 (2020). https://doi.org/10.1109/TCSII.2019.2928322

    Article  Google Scholar 

  26. K. Zou, X. Zhao, A New Modified Robust Variable Step-Size LMS Algorithm, in 4th IEEE Conference on Industrial Electronics and Applications, 2009, pp 2699–2703. https://doi.org/10.1109/ICIEA.2009.5138654

  27. J. Zhang, H. Yu, Q. Zhang, Improved variable step-size LMS algorithm based on hyperbolic tangent function. J. Commun. 41(11), 116–123 (2020)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the reviewers who participated in the review, as well as MJEditor (www.mjeditor.com) for providing English editing services during the preparation of this manuscript.

Funding

No funding agency is associated with the work mentioned in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Li.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhao, X. Variable Step-size LMS Algorithm Based on Hyperbolic Tangent Function. Circuits Syst Signal Process 42, 4415–4431 (2023). https://doi.org/10.1007/s00034-023-02303-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02303-8

Keywords

Navigation