Skip to main content
Log in

Optimal Coprime Array: Properties, Optimization, and k-times extension

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this work, we attempt to solve the problem of achieving more consecutive degrees of freedom (DOF) in a coprime array for direction-of-arrival (DOA) estimation. Specifically, we propose a novel coprime array, which we term as optimal coprime array (OCA). OCA has attractive features in terms of achieving a large number of uniform DOF. Also, closed-form expression of the maximum uniform DOF for a specific number of sensors is available for the OCA, which is generally not found in the coprime arrays. Another advantage of the OCA is that it has less mutual coupling as a subarray of the OCA is translated. The properties of the OCA are analyzed considering two different situations. To increase the number of uniform DOF further, we extend it up to \({\varvec{k}}\)-times and prove that the proposed \({\varvec{k}}\)-times extended OCA (\({\varvec{k}}\)-OCA) works better than the existing \({\varvec{k}}\)-times extended coprime array in both attaining more consecutive DOF and reducing the mutual coupling effect. The \({\varvec{k}}\)-OCA achieves the maximum number of uniform DOF for a specified number of elements among all the existing coprime arrays. The simulation results show the effectiveness of the proposed OCA and the \({\varvec{k}}\)-OCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. S.A. Alawsh, A.H. Muqaibel, Multi-level prime array for sparse sampling. IET Signal Proc. 12(6), 688–699 (2018)

    Article  Google Scholar 

  2. D. Bush, N. Xiang, n-tuple coprime sensor arrays. J. Acoust. Soc. Am. 142(6), EL567–EL572 (2017)

    Article  Google Scholar 

  3. S. Chandran, Advances in Direction-of-Arrival Estimation (Artech House, 2006)

    Google Scholar 

  4. Z. Chen, G. Gokeda, Y. Yu, Introduction to Direction-of-Arrival Estimation (Artech House, 2010)

    Google Scholar 

  5. B. Friedlander, A.J. Weiss, Direction finding in the presence of mutual coupling. IEEE Trans. Antennas Propag. 39(3), 273–284 (1991)

    Article  Google Scholar 

  6. L.C. Godara, Application of antenna arrays to mobile communications, part II: beam-forming and direction-of-arrival considerations. Proc. IEEE 85(8), 1195–1245 (1997)

    Article  Google Scholar 

  7. I. Gupta, A. Ksienski, Effect of mutual coupling on the performance of adaptive arrays. IEEE Trans. Antennas Propag. 31(5), 785–791 (1983)

    Article  Google Scholar 

  8. S. Haykin, J. Reilly, V. Kezys, E. Vertatschitsch, Some aspects of array signal processing. IEE Proc. F-Radar Signal Process. 139(1), 1–26 (1992)

    Article  Google Scholar 

  9. E. Holzman, Introduction to direction-of-arrival estimation (Chen, Z.; 2010) [reviews and abstracts]. IEEE Antennas Propag. Mag. 53(1), 110–111 (2011)

    Article  Google Scholar 

  10. M. Ishiguro, Minimum redundancy linear arrays for a large number of antennas. Radio Sci. 15(6), 1163–1170 (1980)

    Article  Google Scholar 

  11. H. Krim, M. Viberg, Two decades of array signal processing research: the parametric approach. IEEE Signal Process. Mag. 13(4), 67–94 (1996)

    Article  Google Scholar 

  12. C.L. Liu, P.P. Vaidyanathan, Remarks on the spatial smoothing step in coarray MUSIC. IEEE Signal Process. Lett. 22(9), 1438–1442 (2015)

    Article  Google Scholar 

  13. C.L. Liu, P. Vaidyanathan, Super nested arrays: sparse arrays with less mutual coupling than nested arrays, in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP, 2016), pp. 2976–2980

  14. C.L. Liu, P.P. Vaidyanathan, Super nested arrays: linear sparse arrays with reduced mutual coupling—part I: fundamentals. IEEE Trans. Signal Process. 64(15), 3997–4012 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. C.L. Liu, P.P. Vaidyanathan, Super nested arrays: linear sparse arrays with reduced mutual coupling—part II: high-order extensions. IEEE Trans. Signal Process. 64(16), 4203–4217 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. C.L. Liu, P.P. Vaidyanathan, Hourglass arrays and other novel 2-d sparse arrays with reduced mutual coupling. IEEE Trans. Signal Process. 65(13), 3369–3383 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Liu, Y. Zhang, Y. Lu, S. Ren, S. Cao, Augmented nested arrays with enhanced DOF and reduced mutual coupling. IEEE Trans. Signal Process. 65(21), 5549–5563 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Malioutov, M. Cetin, A.S. Willsky, A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 53(8), 3010–3022 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. A.T. Moffet, Minimum-redundancy linear arrays. IEEE Trans. Antennas Propag. 16(2), 172–175 (1968)

    Article  Google Scholar 

  20. P. Pal, P.P. Vaidyanathan, Nested arrays: a novel approach to array processing with enhanced degrees of freedom. IEEE Trans. Signal Process. 58(8), 4167–4181 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. P. Pal, P.P. Vaidyanathan, Coprime sampling and the MUSIC algorithm, in 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE) (IEEE, 2011), pp. 289–294

  22. S.U. Pillai, Array Signal Processing (Springer, 2012)

    Google Scholar 

  23. S. Qin, Y.D. Zhang, M.G. Amin, Generalized coprime array configurations for direction-of-arrival estimation. IEEE Trans. Signal Process. 63(6), 1377–1390 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Raza, W. Liu, Q. Shen, Thinned coprime array for second-order difference co-array generation with reduced mutual coupling. IEEE Trans. Signal Process. 67(8), 2052–2065 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Roy, T. Kailath, ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 37(7), 984–995 (1989)

    Article  MATH  Google Scholar 

  26. R. Schmidt, Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)

    Article  Google Scholar 

  27. T.J. Shan, M. Wax, T. Kailath, On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Trans. Acoust. Speech Signal Process. 33(4), 806–811 (1985)

    Article  Google Scholar 

  28. J. Shi, G. Hu, X. Zhang, H. Zhou, Generalized nested array: optimization for degrees of freedom and mutual coupling. IEEE Commun. Lett. 22(6), 1208–1211 (2018)

    Article  Google Scholar 

  29. P.P. Vaidyanathan, P. Pal, Sparse sensing with co-prime samplers and arrays. IEEE Trans. Signal Process. 59(2), 573–586 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. H.L. Van Trees, Detection, Estimation, and Modulation Theory, Optimum Array Processing, Part IV (Wiley, 2002)

    Google Scholar 

  31. W. Wang, S. Ren, Z. Chen, Unified coprime array with multi-period subarrays for direction-of-arrival estimation. Digit. Signal Process. 74, 30–42 (2018)

    Article  MathSciNet  Google Scholar 

  32. X. Wang, X. Wang, Hole identification and filling in k-times extended co-prime arrays for highly-efficient DOA estimation. IEEE Trans. Signal Process. 67(10), 2693–2706 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. X. Wang, Z. Chen, S. Ren, S. Cao, DOA estimation based on the difference and sum coarray for coprime arrays. Digit. Signal Process. 69, 22–31 (2017)

    Article  Google Scholar 

  34. M. Yang, L. Sun, X. Yuan, B. Chen, Improved nested array with hole-free DCA and more degrees of freedom. Electron. Lett. 52(25), 2068–2070 (2016)

    Article  Google Scholar 

  35. Z. Yang, L. Xie, C. Zhang, Off-grid direction of arrival estimation using sparse Bayesian inference. IEEE Trans. Signal Process. 61(1), 38–43 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Yangg, A.M. Haimovich, B. Chen, X. Yuan, A new array geometry for DOA estimation with enhanced degrees of freedom, in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP, 2016), pp. 3041–3045

  37. H. Zamani, H. Zayyani, F. Marvasti, An iterative dictionary learning-based algorithm for DOA estimation. IEEE Commun. Lett. 20(9), 1784–1787 (2016)

    Article  Google Scholar 

  38. P. Zhao, G. Hu, Z. Qu et al., Enhanced nested array configuration with hole-free co-array and increasing degrees of freedom for DOA estimation. IEEE Commun. Lett. 23(12), 2224–2228 (2019)

    Article  Google Scholar 

  39. W. Zheng, X. Zhang, Y. Wang, J. Shen, B. Champagne, Padded coprime arrays for improved DOA estimation: exploiting hole representation and filling strategies. IEEE Trans. Signal Process. 68, 4597–4611 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. W. Zheng, X. Zhang, Y. Wang, M. Zhou, Q. Wu, Extended coprime array configuration generating large-scale antenna co-array in massive MIMO system. IEEE Trans. Veh. Technol. 68(8), 7841–7853 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Rajen Kumar Patra conveys deepest gratitude to Director, ITR, DRDO, for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajen Kumar Patra.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, R.K., Dhar, A.S. Optimal Coprime Array: Properties, Optimization, and k-times extension. Circuits Syst Signal Process 42, 3770–3794 (2023). https://doi.org/10.1007/s00034-023-02292-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02292-8

Keywords

Navigation