Skip to main content
Log in

Image Deconvolution Using Mixed-Order Salient Edge Selection

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Salient edge selection is a crucial technique to warrant the success of image deblurring. Current edge-based methods mainly focus on the single salient edge without exploiting the rich structural information of different levels of the image. With this in mind, we propose an effective mixed-order salient edge selection for blind image deblurring, i.e., besides the salient edge based on first-order gradient, we further consider combining zero- and second-order information. We find that the finer image structure inscribed at zero-order repairs the important structure missing in the latent image, while the strong structure of salient edges depicted at second-order further enhances the latent image. The union of these three increases the robustness of the intermediate latent image, which leads to an accurate estimation of the kernel. Also, the inclusion of the gradient L0-norm improves the quality of the recovery by preserving the favorable edges and removing the detrimental details. Experimental results show that the proposed method is much faster than the prior-based ones, and it provides more satisfactory recovery than the single salient edge-based approaches (e.g., in terms of error ratio, PSNR, SSIM, SSDE). Compared with state-of-the-art works, our method achieves better results on quantitative datasets and real-world images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on request.

References

  1. N. Apostoloff, A. Fitzgibbon, Bayesian video matting using learnt image priors, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2004), pp. 407–414

  2. L. Alvarez, L. Mazorra, Signal and image restoration using shock filters and anisotropic diffusion. SIAM J. Numer. Anal. 31(4), 590–605 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Chen, F. Fang, T. Wang, G. Zhang, Blind image deblurring with local maximum gradient prior, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019), pp. 1742–1750

  4. L. Chen, F. Fang, J. Zhang, J. Liu, G. Zhang, OID: outlier identifying and discarding in blind image deblurring, in European Conference on Computer Vision (ECCV) (2020), pp. 598–613

  5. S. Cho, S. Lee, Fast motion deblurring. ACM Trans. Graph. 28(5), 1–8 (2009)

    Article  Google Scholar 

  6. T.F. Chan, C.-K. Wong, Total variation blind deconvolution. IEEE Trans. Image Process. 7(3), 370–375 (1998)

    Article  Google Scholar 

  7. S. Cho, J. Wang, S. Lee, Handling outliers in non-blind image deconvolution, in IEEE International Conference on Computer Vision (ICCV) (2011), pp. 495–502

  8. W. Cai, L. Zuo, Zhang, Dark and bright channel prior embedded network for dynamic scene deblurring. IEEE Trans. Image Process. 29, 6885–6897 (2020)

    Article  MATH  Google Scholar 

  9. R. Fergus, B. Singh, A. Hertzmann, S.T. Roweis, W.T. Freeman, Removing camera shake from a single photograph. ACM Trans. Graph. 25(3), 787–794 (2006)

    Article  MATH  Google Scholar 

  10. X. Guo, Y. Li, J. Ma, H. Ling, Mutually guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 42(3), 694–707 (2020)

    Article  Google Scholar 

  11. X. Ge, J. Tan, L. Zhang, Blind image deblurring using a non-linear channel prior based on dark and bright channels. IEEE Trans. Image Process. 30, 6970–6984 (2021)

    Article  MathSciNet  Google Scholar 

  12. X. Ge, J. Tan, L. Zhang, Y. Qian, Blind image deconvolution via salient edge selection and mean curvature regularization. Signal Process. 190, 108336 (2022)

    Article  Google Scholar 

  13. Z. Hu, S. Cho, J. Wang, M.-H. Yang, Deblurring low-light images with light streaks, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014), pp. 3382–3389

  14. Z. Hu, M.H. Yang, Good regions to deblur, in European Conference on Computer Vision (ECCV) (2012), pp. 59–72

  15. N. Joshi, R. Szeliski, D. J. Kriegman, PSF estimation using sharp edge prediction, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2008), pp. 1–8

  16. O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, J. Matas, DeblurGAN: blind motion deblurring using conditional adversarial networks, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018), pp. 8183–8192

  17. D. Krishnan, R. Fergus, Fast image deconvolution using hyper-Laplacian priors, in Advances in Neural Information Processing Systems (NIPS) (2009), pp. 1033–1041.

  18. R. Köhler, M. Hirsch, B. Mohler, B. Schölkopf, S. Harmeling, Recording and playback of camera shake: benchmarking blind deconvolution with a real-world database, in European Conference on Computer Vision (ECCV) (2012), pp. 27–40

  19. T. H. Kim, K. M. Lee, Segmentation-free dynamic scene deblurring, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014), pp. 2766–2773

  20. D. Krishnan, T. Tay, R. Fergus, Blind deconvolution using a normalized sparsity measure, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2011), pp. 233–240

  21. W.-S. Lai, J.-J. Ding, Y.-Y. Lin, Y.-Y. Chuang, Blur kernel estimation using normalized color-line prior, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015), pp. 64–72

  22. W.S. Lai, J.B. Huang, Z. Hu, N. Ahuja, M.H. Yang, A comparative study for single image blind deblurring, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 1701–1709

  23. L. Li, J. Pan, W.-S. Lai, C. Gao, N. Sang, M.-H. Yang, Blind image deblurring via deep discriminative priors. Int. J. Comput. Vis. 127(8), 1025–1043 (2019)

    Article  Google Scholar 

  24. A. Levin, Y. Weiss, F. Durand, W. T. Freeman, Understanding and evaluating blind deconvolution algorithms, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009), pp. 1964–1971

  25. A. Levin, Y. Weiss, F. Durand, W. T. Freeman, Efficient marginal likelihood optimization in blind deconvolution, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2011), pp. 2657–2664

  26. J. Liu, M. Yan, T. Zeng, Surface-aware blind image deblurring. IEEE Trans. Pattern Anal. Mach. Intell. 43(3), 1041–1055 (2021)

    Article  Google Scholar 

  27. J. Mairal, F. Bach, J. Ponce, G. Sapiro, A. Zisserman, Non-local sparse models for image restoration, in IEEE International Conference on Computer Vision (ICCV) (2009), pp. 2272–2279

  28. T. Michaeli, M. Irani, Blind deblurring using internal patch recurrence, in European Conference on Computer Vision (ECCV) (2014), pp. 783–798

  29. S. Nah, T. H. Kim, K. M. Lee, Deep multi-scale convolutional neural network for dynamic scene deblurring, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 3883–3891

  30. S. Osher, L.I. Rudin, Feature-oriented image enhancement using shock filters. SIAM J. Numer. Anal. 27(4), 919–940 (1990)

    Article  MATH  Google Scholar 

  31. D. Perrone, P. Favaro, Total variation blind deconvolution: The devil is in the details, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014), pp. 2909–2916

  32. J. Pan, Z. Hu, Z. Su, Deblurring face images with exemplars, in European Conference on Computer Vision (ECCV) (2014), pp. 47–62

  33. J. Pan, Z. Hu, Z. Su, M.-H. Yang, Deblurring text images via L0-regularized intensity and gradient prior, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014), pp. 2901–2908

  34. J. Pan, Z. Hu, Z. Su, M.H. Yang, L0-regularized intensity and gradient prior for deblurring text images and beyond. IEEE Trans. Pattern Anal. Mach. Intell. 39(2), 342–355 (2017)

    Article  Google Scholar 

  35. J. Pan, R. Liu, Z. Su, X. Gu, Kernel estimation from salient structure for robust motion deblurring. Signal Process. Image Commun. 28(9), 1156–1170 (2013)

    Article  Google Scholar 

  36. J. Pan, D. Sun, H. Pfister, M.-H. Yang, Blind image deblurring using dark channel prior, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 1628–1636

  37. S. Roth, M. J. Black, Fields of experts: a framework for learning image priors, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2005), pp. 860–867

  38. W. Ren, X. Cao, J. Pan, X. Guo, W. Zuo, M.-H. Yang, Image deblurring via enhanced low-rank prior. IEEE Trans. Image Process. 25(7), 3426–3437 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. R. M. Rameshan, S. Chaudhuri, R. Velmurugan, Joint MAP estimation for blind deconvolution: when does it work? ACM Int. Conf. Proc. Ser. 50 (2012)

  40. Y. Romano, M. Elad, P. Milanfar, The little engine that could: regularization by denoising (RED). SIAM J. Imaging Sci. 10(4), 1804–1844 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. L. Sun, S. Cho, J. Wang, J. Hays, Edge-based blur kernel estimation using patch priors, in IEEE International Conference on Computational Photography (ICCP) (2013), pp. 1–8

  42. J. Sun, W. Cao, Z. Xu, J. Ponce, Learning a convolutional neural network for non-uniform motion blur removal, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015), pp. 769–777

  43. C.J. Schuler, M. Hirsch, S. Harmeling, B. Schölkopf, Learning to deblur. IEEE Trans. Pattern Anal. Mach. Intell. 38(7), 1439–1451 (2016)

    Article  Google Scholar 

  44. X. Tao, H. Gao, X. Shen, J. Wang, J. Jia, Scale-recurrent network for deep image deblurring, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018), pp. 8174–8182

  45. M. F. Tappen, B. C. Russell, W. T. Freeman, Exploiting the sparse derivative prior for super-resolution, Massachusetts Institute of Technology, 2003

  46. Y. Tang, Y. Xue, Y. Chen, L. Zhou, Blind deblurring with sparse representation via external patch priors. Digit. Signal Proc. 78, 322–331 (2018)

    Article  Google Scholar 

  47. S.V. Venkatakrishnan, C.A. Bouman, B. Wohlberg, Plug-and play priors for model-based reconstruction, in IEEE Global Conference on Signal and Information Processing (GlobalSIP) (2013).

  48. F. Wen, R. Ying, Y. Liu, P. Liu, T.-K. Truong, A simple local minimal intensity prior and an improved algorithm for blind image deblurring. IEEE Trans. Circuits Syst. Video Technol. 31(8), 2923–2937 (2021)

    Article  Google Scholar 

  49. Z. Xu, H. Chen, Z. Li, Blind image deblurring using group sparse representation. Digit. Signal Proc. 102, 102736 (2020)

    Article  Google Scholar 

  50. L. Xu, J. Jia, Two-phase kernel estimation for robust motion deblurring, in European Conference on Computer Vision (ECCV) (2010), pp. 157–170

  51. L. Xu, C. Lu, Y. Xu, J. Jia, Image smoothing via L0 gradient minimization. ACM Trans. Graph. 30(6), 1–12 (2011)

    Google Scholar 

  52. L. Xu, S. Zheng, J. Jia, Unnatural L0 sparse representation for natural image deblurring, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013), pp. 1107–1114

  53. Y. Yan, W. Ren, Y. Guo, R. Wang, X. Cao, Image deblurring via extreme channels prior, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 4003–4011

  54. Y. Zhang, W. Li, Z. Li, T. Ning, Dual attention per-pixel filter network for spatially varying image deblurring. Digit. Signal Proc. 113, 103008 (2021)

    Article  Google Scholar 

  55. W. Zuo, D. Ren, D. Zhang, S. Gu, L. Zhang, Learning iteration wise generalized shrinkage–thresholding operators for blind deconvolution. IEEE Trans. Image Process. 25(4), 1751–1764 (2016)

    MathSciNet  MATH  Google Scholar 

  56. D. Zoran, Y. Weiss, From learning models of natural image patches to whole image restoration, in IEEE International Conference on Computer Vision (ICCV) (2011), pp. 479–486

  57. H. Zhang, J. Yang, Y. Zhang, N. M. Nasrabadi, T. S. Huang, Close the loop: joint blind image restoration and recognition with sparse representation prior, in IEEE International Conference on Computer Vision (ICCV) (2011), pp. 770–777

Download references

Acknowledgements

We would like to thank the reviewers for their helpful suggestions which greatly improve the clarity of the paper. This work is supported by the National Natural Science Foundation of China (No. 62172135).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dandan Hu or Jieqing Tan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Tan, J. & Ge, X. Image Deconvolution Using Mixed-Order Salient Edge Selection. Circuits Syst Signal Process 42, 3902–3925 (2023). https://doi.org/10.1007/s00034-022-02283-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02283-1

Keywords

Navigation