Skip to main content
Log in

Reduced-Order State Estimation for a Class of Nonlinear Fractional-Order Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper studies the state estimation problem for a class of nonlinear fractional-order systems subject to external disturbances. The nonlinear function in the plans is assumed to be satisfied the one-sided Lipschitz condition and the quadratically inner-bounded condition. We first propose a new reduced-order fractional-order observer for the nonlinear fractional-order systems. Then, based on some results on the Caputo fractional derivative combined with Cauchy matrix inequality and Schur complement lemma, we establish a new sufficient condition to ensure the stability of the error dynamic. Three examples are provided to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. M. Abbaszadeh, H.J. Marquez, Nonlinear observer design for one sided Lipschitz systems. Proc. IEEE Am. Control Conf. 2010, 5284–5289 (2010)

    Google Scholar 

  2. S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory (SIAM, Philadelphia, 1994)

    MATH  Google Scholar 

  3. J. Chen, J.R. Patton, Robust Model-Based Fault Diagnosis for Dynamic Systems (Kluwer Academic Publishers, Massachusetts, 1999)

    MATH  Google Scholar 

  4. W. Chen, A speculative study of 2/3-order fractional Laplacian modeling of turbulence: some thoughts and conjectures. Chaos 16, 023126 (2006)

    MATH  Google Scholar 

  5. M. Darouach, M. Zasadzinski, S.J. Xu, Full-order observers for linear systems with unknown inputs. IEEE Trans. Autom. Control 39, 606–609 (1994)

    MathSciNet  MATH  Google Scholar 

  6. O. Heaviside, Electromagnetic Theory (A Chelsea, New York, 1971)

    MATH  Google Scholar 

  7. M. Hou, P.C. Muller, Design of observers for linear systems with unknown inputs. IEEE Trans. Autom. Control 37, 871–875 (1992)

    MathSciNet  MATH  Google Scholar 

  8. D.C. Huong, M.V. Thuan, State transformations of time-varying delay systems and their applications to state observer design. Discrete Contin. Dyn. Syst. Ser. S 10(3), 413–444 (2017)

    MathSciNet  Google Scholar 

  9. D.C. Huong, H. Trinh, H.M. Tran, T. Fernando, Approach to fault detection of time-delay systems using functional observers. Electron. Lett. 50, 1132–1134 (2014)

    Google Scholar 

  10. D.C. Huong, A fresh approach to the design of observers for time-delay systems. Trans. Inst. Meas. Control. 40, 477–503 (2018)

    Google Scholar 

  11. D.C. Huong, M.V. Thuan, Design of unknown input reduced-order observers for a class of nonlinear fractional-order time-delay systems. Int. J. Adapt. Control Signal Process. 32, 412–423 (2018)

    MathSciNet  MATH  Google Scholar 

  12. G.D. Hu, Observers for one-sided Lipschitz non-linear systems. IMA J. Math. Control. Inf. 23, 395–401 (2006)

    MathSciNet  MATH  Google Scholar 

  13. M. Ichise, Y. Nagayanagi, T. Kojima, An analog simulation of non-integer order transfer functions for analysis of electrode processes. J. Electroanal. Chem. 33, 253–265 (1971)

    Google Scholar 

  14. A. Kilbas, H. Srivastava, J. Trujillo, Theory and Application of Fractional Differential Equations (Elsevier, San Diego, 2006)

    MATH  Google Scholar 

  15. T. Kaczorek, Reduced-order fractional descriptor observers for fractional descriptor continuous-time linear system. Bull. Pol. Acad. Sci. Tech. Sci. 62, 889–895 (2014)

    MATH  Google Scholar 

  16. T. Kaczorek, Reduced-order perfect nonlinear observers of fractional descriptor discrete-time nonlinear systems. Int. J. Appl. Math. Comput. Sci. 27, 245–251 (2017)

    MathSciNet  MATH  Google Scholar 

  17. T. Kaczorek, Positive linear systems consisting of \(n\) subsystems with different fractional orders. IEEE Trans. Circuits Syst. I Reg. Papers 58, 1203–1210 (2011)

    MathSciNet  MATH  Google Scholar 

  18. R.C. Koeller, Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 229–307 (1984)

    MathSciNet  MATH  Google Scholar 

  19. D. Kusnezov, A. Bulgac, G.D. Dang, Quantum levy processes and fractional kinetics. Phys. Rev. Lett. 82, 1136–1139 (1999)

    Google Scholar 

  20. Y.-H. Lan, L.-L. Wang, Y. Ding, Y. Zhou, Full-order and reduced-order observers design for a class of fractional-order nonlinear systems. Asian J. Control 182, 1467–1477 (2016)

    MathSciNet  MATH  Google Scholar 

  21. G.J. Lu, Chaotic dynamics of the fractional-order Lu system and its synchronization. Phys. Lett. A 354, 305–311 (2006)

    Google Scholar 

  22. M.M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    MathSciNet  MATH  Google Scholar 

  23. I. N’doye, M. Darouach, H. Voos, M. Zasadzinski, Design of unkown input fractional-order observers for fractional-order systems. Int. J. Appl. Math. Comput. Sci. 23, 491–500 (2013)

    MathSciNet  MATH  Google Scholar 

  24. C.M.A. Pinto, A.R.M. Carvalho, Fractional modeling of typical stages in HIV epidemics with drug resistance. Prog. Fract. Differ. Appl. 1, 111–122 (2015)

    Google Scholar 

  25. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)

    MATH  Google Scholar 

  26. S. Qureshi, A. Yusuf, A.A. Shaikh, M. Inc, D. Baleanu, Fractional modeling of blood ethanol concentration system with real data application. Chaos Interdiscip. J. Nonlinear Sci. 29, 013143 (2019)

    MathSciNet  MATH  Google Scholar 

  27. R. Saravanakumar, M. Syed Ali, M. Hua, \(H_{\infty }\) state estimation of stochastic neural networks with mixed time-varying delays. Soft. Comput. 20, 3475–3487 (2015)

    MATH  Google Scholar 

  28. R. Saravanakumar, H. Mukaidani, P. Muthukumar, Extended dissipative state estimation of delayed stochastic neural networks. Neurocomputing 406, 244–252 (2020)

    Google Scholar 

  29. M. Shen, S. Yan, Y. Sun, G. Zhang, Nonfragile \(H_{\infty }\) output feedback control of linear systems with an event-triggered scheme against unreliable communication links. ISA Trans. 84, 96–103 (2019)

    Google Scholar 

  30. M. Shen, H. Zhang, S.K. Nguang, C.K. Ahn, \(H_{\infty }\) output anti-disturbance control of stochastic Markov jump systems with multiple disturbances. IEEE Trans. Syst. Man Cybern. Syst. 51, 7633–7643 (2021)

    Google Scholar 

  31. N. Sugimoto, Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves. J. Fluid Mech. 225, 631–653 (1991)

    MathSciNet  MATH  Google Scholar 

  32. J. Tian, S. Ma, C. Zhang, Unknown input reduced-order observer design for one-sided Lipschitz nonlinear descriptor Markovian jump systems. Asian J. Control 21, 952–964 (2019)

    MathSciNet  MATH  Google Scholar 

  33. H. Trinh, D.C. Huong, L.V. Hien, S. Nahavandi, Design of reduced-order positive linear functional observers for positive time-delay systems. IEEE Trans. Circuits Syst. II Exp. Briefs 64(5), 555–559 (2017)

    Google Scholar 

  34. H. Trinh, H.T. Tuan, Stability of fractional-order nonlinear systems by Lyapunov direct method. IET Control Theory Appl. 12, 2417–2422 (2018)

    MathSciNet  Google Scholar 

  35. G. Vainikko, Which functions are fractionally differentiable? J. Anal. Appl. 35, 465–487 (2016)

    MathSciNet  MATH  Google Scholar 

  36. M. Xu, G.D. Hu, Y. Zhao, Reduced-order observer design for one-sided Lipschitz non-linear systems. IMA J. Math. Control. Inf. 26, 299–317 (2009)

    MathSciNet  MATH  Google Scholar 

  37. G.M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002)

    MathSciNet  MATH  Google Scholar 

  38. A. Zemouche, M. Boutayeb, Observer design for Lipschitz nonlinear systems: the discrete-time case. IEEE Trans. Circuits Syst. II Exp. Briefs 53, 777–781 (2006)

    Google Scholar 

  39. A. Zemouche, M. Boutayeb, On LMI conditions to design observers for Lipschitz nonlinear systems. Automatica J. IFAC 49, 585–591 (2013)

    MathSciNet  MATH  Google Scholar 

  40. W. Zhang, H. Su, H. Wang, Z. Han, Full-order and reduced-order observers for one-sided Lipschitz nonlinear systems using Riccati equations. Commun. Nonlinear Sci. Numer. Simul. 17, 4968–4977 (2012)

    MathSciNet  MATH  Google Scholar 

  41. H. Zhang, Y. Shi, J. Wang, On energy-to-peak filtering for nonuniformly sampled nonlinear systems: a Markovian jump system approach. IEEE Trans. Fuzzy Syst. 22, 212–222 (2014)

    Google Scholar 

  42. W. Zhang, H. Su, S. Su, D. Wang, Nonlinear \(H_{\infty }\) observer design for one-sided Lipschitz systems. Neurocomputing 145, 505–511 (2014)

    Google Scholar 

  43. W. Zhang, H. Su, F. Zhu, G. Azar, Unknown input observer design for one-sided Lipschitz nonlinear systems. Nonlinear Dyn. 23, 395–401 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author sincerely thanks the anonymous reviewers for their constructive comments that helped improve the quality and presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh Cong Huong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huong, D.C. Reduced-Order State Estimation for a Class of Nonlinear Fractional-Order Systems. Circuits Syst Signal Process 42, 2740–2754 (2023). https://doi.org/10.1007/s00034-022-02267-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02267-1

Keywords

Navigation