Skip to main content
Log in

Ultra-wideband Low-Noise Amplifier with Tunable Bandwidth

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A novel ultra-wideband low-noise amplifier realized by a dual-resonance load network and a Cascode stage with bandwidth tuning capability is presented in this paper. Impedance matching at the input port is accomplished by a front end common gate stage along with a dual-resonance network. Ultra-wide bandwidth, consistent high-power gain and constant low noise figure throughout the desired frequency band is achieved due to the smart configuration of the proposed topology. Bandwidth tuning is obtained utilizing an analog voltage-controlled MOS Varactor. The proposed amplifier performance is verified by both 180 nm CMOS Technology post-layout simulations at Cadence Spectre Software and also measurement results which fortunately exhibit a good matching with each other. These analyses provide 14.5 ± 1 dB power gain, 3.8 ± 0.2 dB noise figure, and input impedance matching less than 10.8 dB. Meanwhile, the reverse isolation and output impedance matching is achieved at frequency band of 3–12 GHz to be − 76 dB and − 14 dB, respectively. The structure has a low-power consumption of 23mW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11.
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H. Alavi-Rad, S. Ziabakhsh, S. Ziabakhsh, M. Yagoub, A 0.9 V CMOS 3–5 Ghz broadband flat gain low-noise amplifier for ultra-wide band receivers. Can. J. Electr. Comput. Eng. 36(2), 87–91 (2013)

    Article  Google Scholar 

  2. S.J. Azhari, K. Monfaredi, S. Amiri, A 12-bit, low-voltage, nanoampere-based, ultralow-power, ultralow-glitch current-steering DAC for HDTV. International Nano Letters 2(1), 1–7 (2012)

    Article  Google Scholar 

  3. A. Bevilacqua, A.M. Niknejad, An ultrawideband CMOS low-noise amplifier for 3.1–10.6-GHz wireless receivers. IEEE J. Solid-State Circuits 39(12), 2259–2268 (2004)

    Article  Google Scholar 

  4. A. Bozorg, R.B. Staszewski, A 0.02–4.5-GHz LN (T) A in 28-nm CMOS for 5G exploiting noise reduction and current reuse. IEEE J. Solid-State Circuits 56(2), 404–415 (2020)

    Article  Google Scholar 

  5. R. Eskandari, A. Ebrahimi, J. Sobhi, A wideband noise cancelling balun LNA employing current reuse technique. Microelectron. J. 76, 1–7 (2018)

    Article  Google Scholar 

  6. P. Farag, R. Groza, S. Hintea, P. Soser, A programmable biopotential aquisition front-end with a resistance-free current-balancing instrumentation amplifier. Adv. Electr. Comput. Eng. 18(2), 85–92 (2018)

    Article  Google Scholar 

  7. C.-T. Fu, C.-N. Kuo, S.S. Taylor, Low-noise amplifier design with dual reactive feedback for broadband simultaneous noise and impedance matching. IEEE Trans. Microw. Theory Tech. 58(4), 795–806 (2010)

    Article  Google Scholar 

  8. R. Jafarnejad, A. Jannesari, J. Sobhi, A sub-2-dB noise figure linear wideband low noise amplifier in 0.18 µm CMOS. Microelectron. J. 67, 135–142 (2017)

  9. R. Jafarnejad, A. Jannesari, J. Sobhi, Pre-distortion technique to improve linearity of low noise amplifier. Microelectron. J. 61, 95–105 (2017)

    Article  Google Scholar 

  10. A.A. Kumar, A. Dutta, B.D. Sahoo, A low-power reconfigurable narrowband/wideband LNA for cognitive radio-wireless sensor network. IEEE Trans. Very Large Scale Integr. Syst. 28(1), 212–223 (2019)

    Article  Google Scholar 

  11. T.H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits (Cambridge University Press, Cambridge, 2003)

    Book  Google Scholar 

  12. N. Li, W. Feng, X. Li, A CMOS 3–12-GHz ultrawideband low noise amplifier by dual-resonance network. IEEE Microwave Wirel. Compon. Lett. 27(4), 383–385 (2017)

    Article  Google Scholar 

  13. Y.-S. Lin, J.-F. Chang, S.-S. Lu, Analysis and design of CMOS distributed amplifier using inductively peaking cascaded gain cell for UWB systems. IEEE Trans. Microw. Theory Tech. 59(10), 2513–2524 (2011)

    Article  Google Scholar 

  14. Y.-S. Lin, C.-C. Wang, G.-L. Lee, C.-C. Chen, High-performance wideband low-noise amplifier using enhanced π-match input network. IEEE Microw. Wirel. Compon. Lett. 24(3), 200–202 (2014)

    Article  Google Scholar 

  15. Z. Liu, C.C. Boon, X. Yu, C. Li, K. Yang, Y. Liang, A 0.061-mm2 1–11-GHz noise-canceling low-noise amplifier employing active feedforward with simultaneous current and noise reduction. IEEE Trans. Microw. Theory Tech. 69(6), 3093–3106 (2021)

    Article  Google Scholar 

  16. K. Monfaredi, H.F. Baghtash, S.J. Azhari, A novel ultra-low-power low-voltage femto-ampere current mirror. Circuits Syst. Signal Process. 31(3), 833–847 (2012)

    Article  Google Scholar 

  17. K. Monfaredi, Distributed unique-size MOS technique: a promising universal approach capable of resolving circuit design bottlenecks of modern era. Circuits Syst. Signal Process. 38(2), 512–528 (2019)

    Article  Google Scholar 

  18. C. Nguyen, M. Miao, Design of CMOS RFIC Ultra-wideband Impulse Transmitters and Receivers (Springer, Berlin, 2017)

    Book  Google Scholar 

  19. R.D. Ortega, S.L. Khemchandani, H.G. Vázquez, F.J. del Pino Suárez, Design of Low-Noise Amplifiers for Ultra-wideband Communications (McGraw-Hill Education, New York, 2014)

    Google Scholar 

  20. A. Popa, Increasing the performance of energy-detection based uwb demodulator with a supplementary integration block. Adv. Electr. Comput. Eng. 12(3), 27–32 (2012)

    Article  MathSciNet  Google Scholar 

  21. H. Sahoolizadeh, A. Jannesari, M. Dousti, A new approach to frequency-domain noise analysis and design of a very-low noise amplifier in radio and microwave frequencies. Microelectron. J. 68, 14–22 (2017)

    Article  Google Scholar 

  22. G. Sapone, G. Palmisano, A 3–10-GHz low-power CMOS low-noise amplifier for ultra-wideband communication. IEEE Trans. Microw. Theory Tech. 59(3), 678–686 (2010)

    Article  Google Scholar 

  23. S.M. Seyyed Najjar Hoseini, R. Zaker, K. Monfaredi, A microstrip folded compact wideband band-pass filter with wide upper stopband. ETRI J. 43(6), 957–965 (2021)

    Article  Google Scholar 

  24. T.-P. Wang, Design and analysis of simultaneous wideband input/output matching technique for ultra-wideband amplifier. IEEE Access 9, 46800–46809 (2021)

    Article  Google Scholar 

  25. M. Yousefi, Z.D. Koozehkanani, J. Sobhi, H. Jangi, A High Efficiency Fully Integrated OOK Transmitter for WBAN. Journal of Electronic Science and Technology 12(3), 322–326 (2014)

    Google Scholar 

  26. M. Yousefi, K. Monfaredi, A high efficiency BPSK receiver for short range wireless network. TELKOMNIKA (Telecommun. Comput. Electron. Control) 17(2), 995–1005 (2019)

    Article  Google Scholar 

  27. H. Yu, Y. Chen, C.C. Boon, C. Li, P.-I. Mak, R.P. Martins, A 0.044-mm2 0.5-to-7-GHz resistor-plus-source-follower-feedback noise-cancelling LNA achieving a flat NF of 3.3 ± 0.45 dB. IEEE Trans. Circuits Syst. II Express Briefs 66(1), 71–75 (2018)

    Google Scholar 

  28. H. Yu, Y. Chen, C.C. Boon, P.-I. Mak, R.P. Martins, A 0.096-mm2 1–20-GHz triple-path noise-canceling common-gate common-source LNA with dual complementary pMOS–nMOS configuration. IEEE Trans. Microw. Theory Tech. 68(1), 144–159 (2019)

    Article  Google Scholar 

  29. A. Zokaei, A. Amirabadi, A 65 nm linear broad-band differential low noise amplifier using post distortion technique. Microelectron. J. 74, 24–33 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousa Yousefi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefi, M., Seyyed Najjar Hoseini, S.M. & Monfaredi, K. Ultra-wideband Low-Noise Amplifier with Tunable Bandwidth. Circuits Syst Signal Process 42, 2557–2572 (2023). https://doi.org/10.1007/s00034-022-02249-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02249-3

Keywords

Navigation