Skip to main content
Log in

Signal Reconstruction from Blind Compressive Measurements Using Procrustes Method

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The reconstruction of signals from their blind compressed measurements is a highly ill-posed problem because the representing basis is unknown. This paper proposes an alternating optimization method to estimate the signal from a given set of blind compressive measurement vectors. The representing coefficients, representing basis (sparsifying basis), and the updated estimate of the signals are identified iteratively. The representing basis is identified using the orthogonal Procrustes method. The signal estimate is updated using \(\ell _1\)-trend filtering. The high computational intensity of the proposed method compared to other existing methods limits its application to non-real-time signal estimation. The proposed method reconstructs the signal uniquely up to a lower error bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The codes and the synthetic data generated for the current study are available from the corresponding author on request. A working example of the code for speech signal is given in the GITHUB repository. The link to the repository is https://github.com/veenanarayanan28/BCS-using-Orthogonal-Procrustes-method.

References

  1. B. Adcock, N. Dexter, Q. Xu, Improved recovery guarantees and sampling strategies for TV minimization in compressive imaging. SIAM J. Imaging Sci. 14(3), 1149–1183 (2021). https://doi.org/10.1137/20M136788X

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009). https://doi.org/10.1137/080716542

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011). https://doi.org/10.1561/2200000016

    Article  MATH  Google Scholar 

  4. S.S. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998). https://doi.org/10.1137/S1064827596304010

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Daubechies, M. Defrise, C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004). https://doi.org/10.1002/cpa.20042

    Article  MathSciNet  MATH  Google Scholar 

  6. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006). https://doi.org/10.1109/TIT.2006.871582

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Everson, Orthogonal, but not orthonormal, Procrustes problems. Adv. Comput. Math. 4655–4666 (1997)

  8. S. Gleichman, Y.C. Eldar, Blind compressed sensing. IEEE Trans. Inf. Theory 57(10), 6958–6975 (2011). https://doi.org/10.1109/TIT.2011.2165821

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Grossi, R. Lanzarotti, J. Lin, Orthogonal Procrustes analysis for dictionary learning in sparse linear representation. PLoS ONE (2017). https://doi.org/10.1371/journal.pone.0169663

    Article  Google Scholar 

  10. Y. Hu, P.C. Loizou, Evaluation of objective quality measures for speech enhancement. IEEE Trans. Audio Speech Lang. Process. 16(1), 229–238 (2008). https://doi.org/10.1109/TASL.2007.911054

    Article  Google Scholar 

  11. K.H. Jin, J.C. Ye, Annihilating filter-based low-rank Hankel matrix approach for image inpainting. IEEE Trans. Image Process. 24(11), 3498–3511 (2015). https://doi.org/10.1109/TIP.2015.2446943

    Article  MathSciNet  MATH  Google Scholar 

  12. S.J. Kim, K. Koh, S. Boyd, D. Gorinevsky, \(\ell _1\) trend filtering. SIAM Rev. 51(2), 339–360 (2009). https://doi.org/10.1137/070690274

    Article  MathSciNet  MATH  Google Scholar 

  13. S.G. Lingala, M. Jacob, A blind compressive sensing frame work for accelerated dynamic MRI, in 9th IEEE International Symposium on Biomedical Imaging (ISBI) (2012), pp. 1060–1063

  14. S.G. Lingala, M. Jacob, Blind compressive sensing dynamic MRI. IEEE Trans. Med. Imaging 32(6), 1132–1145 (2013). https://doi.org/10.1109/TMI.2013.2255133

    Article  Google Scholar 

  15. D.G. Luenberger, Y. Ye, Quasi-newton methods, in Linear and Nonlinear Programming. International Series in Operations Research and Management Science, 116 (Springer, US, 2008), pp. 285–317

  16. A. Majumdar, Improving synthesis and analysis prior blind compressed sensing with low-rank constraints for dynamic MRI reconstruction. Magn. Reson. Imaging 33, 174–179 (2015)

    Article  Google Scholar 

  17. A. Majumdar, R. Ward, Learning space–time dictionaries for blind compressed sensing dynamic MRI reconstruction, in IEEE International Conference on Image Processing (ICIP, 2015), pp. 4550–4554

  18. V. Narayanan, G. Abhilash, Reconstruction of signals from their blind compressive measurements, in 2nd IEEE International Conference on Advanced Communication Technologies and Signal Processing (ACTS, 2021), pp. 1–6. https://doi.org/10.1109/ACTS53447.2021.9708321

  19. G. Parthasarathy, G. Abhilash, Entropy-based transform learning algorithms. IET Signal Process. 12(4), 439–446 (2017). https://doi.org/10.1049/iet-spr.2017.0337

    Article  Google Scholar 

  20. G. Parthasarathy, G. Abhilash, Transform learning algorithm based on the probability of representation of signals, in 25th IEEE European Signal Processing Conference (EUSIPCO, 2017), pp. 1329–1333. https://doi.org/10.23919/EUSIPCO.2017.8081424

  21. D.B. Percival, H.O. Mofjeld, Analysis of subtidal coastal sea level fluctuations using wavelets. J. Am. Stat. Assoc. 92(439), 868–880 (1997)

    Article  MATH  Google Scholar 

  22. S. Ravishankar, Y. Bresler, MR image reconstruction from highly under sampled k-space data by dictionary learning. IEEE Trans. Med. Imaging 30(5), 1028–1041 (2011). https://doi.org/10.1109/TMI.2010.2090538

    Article  Google Scholar 

  23. S. Ravishankar, Y. Bresler, Closed-form solutions within sparsifying transform learning, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP, 2013), pp. 5378–5382. https://doi.org/10.1109/ICASSP.2013.6638690

  24. S. Ravishankar, Y. Bresler, Blind compressed sensing using sparsifying transforms, in 2015 International Conference on Sampling Theory and Applications (SampTA, 2015), pp. 513–517

  25. S. Ravishankar, Y. Bresler, Efficient blind compressed sensing using sparsifying transforms with convergence guarantees and application to magnetic resonance imaging. SIAM J. Imaging Sci. 8(4), 2519–2557 (2015). https://doi.org/10.1137/141002293

    Article  MathSciNet  MATH  Google Scholar 

  26. A.K. Roonizi, \(\ell _1\) and \(\ell _2\) trend filtering: a Kalman filter approach [lecture notes]. IEEE Signal Process. Mag. 38(6), 137–145 (2021). https://doi.org/10.1109/MSP.2021.3102900

    Article  Google Scholar 

  27. P.H. Schonemann, A generalized solution of the orthogonal Procrustes problem. Psychometrika 31, 1–10 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  28. Y. Wang, J. Yang, W. Yin, Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(3), 248–272 (2008). https://doi.org/10.1137/080724265

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veena Narayanan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayanan, V., Abhilash, G. Signal Reconstruction from Blind Compressive Measurements Using Procrustes Method. Circuits Syst Signal Process 42, 2941–2958 (2023). https://doi.org/10.1007/s00034-022-02246-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02246-6

Keywords

Navigation