Skip to main content
Log in

Nonlinear MPC of Time-Varying Delay Discrete-Time Heterogeneous Multi-agent Systems Using Lyapunov–Krasovskii Approach

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper deals with Lyapunov-based Model Predictive Control (MPC) for solving the consensus problem of a class of discrete-time heterogeneous multi-agent systems. The agents consist of nonlinear functions and time-varying delay. In this regard, a comprehensive model that represents the dynamic equations of all agents is introduced. Then, an optimization problem is defined by selecting an appropriate cost function and the control vector is set as a state feedback control law. In this regard, a Lyapunov-based constraint is explored in the procedure of the MPC method to derive the conditions for the consensus. The consensus protocol and feedback gain of the state feedback control law are obtained through the solution of linear matrix inequalities which are extracted by considering the appropriate Lyapunov–Krasovskii functional. Finally, to emphasize the validity and applicability of the designed algorithm, one numerical and two practical examples are simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. P. Anggraeni, M. Defoort, M. Djemai, A. Subiantoro, A. Muis, Consensus of double integrator multi-agent systems using decentralized model predictive control. In: Proc. 5th. Int. Conf. Control. Eng. Inform. Technol.. (2017)

  2. N.A. Baleghi, M.H. Shafiei, Delay-dependent stability analysis for discrete-time switched linear systems with parametric uncertainties. J. Vib. Control 24(20), 4921–4930 (2018)

    Article  MathSciNet  Google Scholar 

  3. S. Chen, B. Chen, F. Shi, Distributed fault-tolerant consensus protocol for fuzzy multi-agent systems. Circuit. Syst. Signal. Process. 38(2), 611–624 (2019)

    Article  MathSciNet  Google Scholar 

  4. Y. Chen, J. Lu, X. Yu, D.J. Hill, Multi-agent systems with dynamical topologies: consensus and applications. IEEE. Circuit. Syst. Mag. 13(3), 21–34 (2013)

    Article  Google Scholar 

  5. Z. Cheng, H.T. Zhang, M.C. Fan, G. Chen, Distributed consensus of multi-agent systems with input constraints: a model predictive control approach. IEEE Trans. Circuit. Syst. I. Regul. Pap. 62(3), 825–834 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. D.A. Copp, K.G. Vamvoudakis, J.P. Hespanha, Distributed output-feedback model predictive control for multi-agent consensus. Syst. Control Lett. 127, 52–59 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Duan, H. Zhang, Y. Wang, J. Han, Output consensus of heterogeneous linear MASs by self-triggered MPC scheme. Neurocomputing 315, 476–485 (2018)

    Article  Google Scholar 

  8. G. Ferrari-Trecate, L. Galbusera, M.P.E. Marciandi, R. Scattolini, Model predictive control schemes for consensus in multi-agent systems with single-and double-integrator dynamics. IEEE. Trans. Autom. Control 54(11), 2560–2572 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Gao, J. Huang, Leader–following consensus of uncertain strict feedback multi agent systems subject to sensor and actuator attacks. Int. J. Robust. Nonlinear Control 30(17), 7635–7654 (2020)

    Article  MathSciNet  Google Scholar 

  10. Y. Gao, L. Dai, Y. Xia, Y. Liu, Distributed model predictive control for consensus of nonlinear second-order multi-agent systems. Int. J. Robust Nonlinear Control 27(5), 830–842 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Gautam, K.C. Veluvolu, Y.C. Soh, Communication–computation tradeoff in distributed consensus optimization for MPC-based coordinated control under wireless communications. J. Frankl. Inst. 354(9), 3654–3677 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Gholami, T. Binazadeh, Robust finite-time H∞ controller design for uncertain one-sided lipschitz systems with time-delay and input amplitude constraints. Circuit. Syst. Signal Process. 38(7), 3020–3040 (2019)

    Article  Google Scholar 

  13. M. Golestani, S. Mobayen, F. Tchier, Adaptive finite-time tracking control of uncertain non-linear n-order systems with unmatched uncertainties. IET Control Theory Appl. 10(14), 1675–1683 (2016)

    Article  MathSciNet  Google Scholar 

  14. A.R. Hakimi, T. Binazadeh, Robust adaptive limit cycle controller design for nonlinear time-delay Systems. Circuit. Syst. Signal Process. 41(1), 57–76 (2022)

    Article  Google Scholar 

  15. Y. He, S. Li, Dissipativity-guaranteed distributed model predictive controller for reconfigurable large-scale system. Circuit. Syst. Signal Process. 39(4), 1873–1895 (2020)

    Article  Google Scholar 

  16. M. Hirche, P. N. Köhler, M. A. Müller, F. Allgöwer, Distributed model predictive control for consensus of constrained heterogeneous linear systems. In 2020 59th IEEE Conference on Decision and Control (CDC) 2020. pp. 1248–1253 ‏

  17. E. Jafari, T. Binazadeh, On transient behavior improvement of constrained nonlinear time-delay descriptor systems. ISA Trans. 118, 55–65 (2021)

    Article  Google Scholar 

  18. D. Kouzoupis, E. Klintberg, M. Diehl, S.A. Gros, A dual Newton strategy for scenario decomposition in robust multistage MPC. Int. J. Robust Nonlinear Control 28(6), 2340–2355 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. P.A. Lopes, Low-delay and low-cost sigma-delta adaptive controller for active noise control. Circuit. Syst. Signal Process. 41(5), 2988–2999 (2022)

    Article  Google Scholar 

  20. L. Lu, Y. Zou, Y. Niu, Event-driven robust output feedback control for constrained linear systems via model predictive control method. Circuit. Syst. Signal Process. 36(2), 543–558 (2017)

    Article  MATH  Google Scholar 

  21. J. M. Maciejowski, Predictive control: with constraints. Pearson Education. (2002)

  22. D.Q. Mayne, J.B. Rawlings, C.V. Rao, P.O. Scokaert, Constrained model predictive control: stability and optimality. Automatica 36(6), 789–814 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Murayama, Distributed model predictive consensus control for robotic swarm system. Life Robot. Artif. 23(4), 628–635 (2018)

    Article  Google Scholar 

  24. N. Rahimi, T. Binazadeh, M. Shasadeghi, Observer-based consensus of higher-order nonlinear heterogeneous multi agent systems with unmatched uncertainties: application on robotic systems. Robotica 38(9), 1605–1626 (2020)

    Article  Google Scholar 

  25. N. Rahimi, T. Binazadeh, Distributed robust consensus control for nonlinear leader–follower multi-agent systems based on adaptive observer-based sliding mode. J. Vib. Control 25(1), 109–121 (2019)

    Article  MathSciNet  Google Scholar 

  26. N. Rahimi, T. Binazadeh, Robust model predictive control of heterogeneous time-delay multi-agent systems with polytopic uncertainties and input amplitude constraints. J. Vib. Control 27(9–10), 1098–1112 (2021)

    Article  MathSciNet  Google Scholar 

  27. M. Shahbazzadeh, S.J. Sadati, Delay-dependent stabilization of Time-delay systems with nonlinear perturbations. Circuit. Syst. Signal Process. 41(2), 684–699 (2022)

    Article  Google Scholar 

  28. Y. Su, Y. Shi, C. Sun, Distributed model predictive control for tracking consensus of linear multi agent systems with additive disturbances and time-varying communication delays. IEEE Transact. Cybern. 51(7), 3813–3823 (2019)

    Article  Google Scholar 

  29. H.J. Sun, R. Xia, A. Yu, Fully distributed Event-triggered consensus for a class of Second-order nonlinear Multi-agent systems. Circuit. Syst. Signal Process. 41(2), 725–742 (2022)

    Article  MathSciNet  Google Scholar 

  30. Q. Wang, Z. Duan, Y. Lv, Q. Wang, G. Chen, Linear quadratic optimal consensus of discrete-time multi-agent systems with optimal steady state: a distributed model predictive control approach. Automatica 127, 109505 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Q. Wang, Z. Duan, Y. Lv, Q. Wang, G. Chen, Distributed model predictive control for linear–quadratic performance and consensus state optimization of multi agent systems. IEEE Transact. Cybern. 51(6), 2905–2915 (2020)

    Article  Google Scholar 

  32. X. Yin, D. Yue, S. Hu, H. Zhang, Distributed adaptive model-based event-triggered predictive control for consensus of multi agent systems. Int. J. Robust Nonlinear Control 28(18), 6180–6201 (2018)

    Article  MATH  Google Scholar 

  33. J. Zhan, Y. Chen, A. Aleksandrov, X. Li, Robust distributed model predictive control based consensus of general linear multi-agent systems. IEEE International Symposium on Circuits and Systems (ISCAS). 2019, pp. 1–5‏

  34. J. Zhan, X. Li, Consensus of sampled-data multi-agent networking systems via model predictive control. Automatica 49(8), 2502–2507 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. J. Zhan, X. Li, Self-triggered consensus of multi-agent systems via model predictive control. IFAC-PapersOnLine. 49(4), 19–24 (2016)

    Article  MathSciNet  Google Scholar 

  36. Z. Zhong, L. Sun, J. Wang, P. Lv, H. Zheng, Consensus for first-and second-order discrete-time multi-agent systems with delays based on model predictive control schemes. Circuit. Syst. Signal. Process. 34(1), 127–152 (2015)

    Article  MATH  Google Scholar 

  37. L. Zhou, S. Li, Distributed model predictive control for consensus of sampled-data multi-agent systems with double-integrator dynamics. IET Control Theory Appl. 9(12), 1774–1780 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Binazadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, N., Binazadeh, T. Nonlinear MPC of Time-Varying Delay Discrete-Time Heterogeneous Multi-agent Systems Using Lyapunov–Krasovskii Approach. Circuits Syst Signal Process 42, 2606–2634 (2023). https://doi.org/10.1007/s00034-022-02236-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02236-8

Keywords

Navigation