Skip to main content
Log in

Analysis of GIC-Based Frequency-Dependent Negative Resistance-Based Filters

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we analyze the effect of opamp finite gain-bandwidth-product (GBW) on the performance of generalized impedance converter (GIC)-based frequency-dependent negative resistance (FDNR) realizations. Their use for realizing a resonator as well as second-order low-pass filter and a high-order filter is also investigated. The effect of finite GBW of the opamps on the pole-frequency, pole-Q and transmission zeroes of resonators and low-pass filters is presented together with simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All the data used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M.T. Abuelma'atti, S.K. Dhar, CFOA-based floating negative inductance, positive frequency dependent resistance and resistance-controlled capacitance and resistance emulator, in 2016 International Conference on Electronics, Information, and Communications (ICEIC), pp. 1–3 (2016). https://doi.org/10.1109/ELINFOCOM.2016.7562980

  2. P.V. Ananda Mohan, in VLSI Analog Filters: Active RC, OTA-C, and SC (Modeling and Simulation in Science, Engineering and Technology), Kindle Edition, Birkhauser (2013)

  3. A. Antoniou, Realization of gyrators using operational amplifiers and their use in RC-active network synthesis. Proc. IEE 116, 1838–1850 (1969)

    Google Scholar 

  4. A. Antoniou, Bandpass transformation and realization using frequency-dependent negative-resistance elements. IEEE Trans. Circuit Theory 18, 297–299 (1971). https://doi.org/10.1109/TCT.1971.1083241

    Article  Google Scholar 

  5. U.E. Ayten, U.E. Sagbas, M. Herencsar, N.J. Koton, Novel floating general element simulators using CBTA. Radio Eng. 21, 11–19 (2012)

    Google Scholar 

  6. L.T. Bruton, Frequency selectivity using positive impedance converter-type networks. Proc. IEEE. 56, 1378–1379 (1968)

    Article  Google Scholar 

  7. L.T. Bruton, Network transfer functions using the concept of frequency dependent negative resistance. IEEE Trans. Circuit Theory 16, 406–408 (1969)

    Article  Google Scholar 

  8. L.T. Bruton, ‘Non-ideal performance of two-amplifier positive impedance converters.’ IEEE Trans. Circuit Theory 17, 541–549 (1970)

    Article  Google Scholar 

  9. L.T. Bruton, J.T. Lim, High-frequency comparison of GIC-simulated inductance circuits. Int. J. Circuit Theory Appl. 2, 401–404 (1974)

    Article  Google Scholar 

  10. L.T. Bruton, Multiple-amplifier RC-active filter design with emphasis on GIC realizations (invited paper). IEEE Trans. Circuits Syst. 25, 830–845 (1978)

    Article  Google Scholar 

  11. A. Carlosena, D. Muller, G.S. Moschytz, Resistively variable capacitors using general impedance converters. Proc. Inst. Electron. Eng. Part G 139, 507–516 (1992)

    Google Scholar 

  12. N. Chuayphan, B. Srisuchinwong, A unity-gain approach to a simple FDNR-based chaotic jerk oscillator. Electron. Lett. 58, 545–547 (2022). https://doi.org/10.1049/ell2.12536

    Article  Google Scholar 

  13. M. Cooperman, C.W. Kapral, Integrated switched-capacitor FDNR filter. IEEE J. Solid State Circuits 18, 378–383 (1983)

    Article  Google Scholar 

  14. A.S. Elwakil, M.P. Kennedy, Chaotic oscillator configuration using a frequency dependent negative resistor, in 1999 IEEE International Symposium on Circuits and Systems (ISCAS), vol. 5, pp. 399–402 (1999). https://doi.org/10.1109/ISCAS.1999.777593

  15. C. Eswaran, V. Ganapathy, A. Antoniou, On the sensitivity of GIC-based wave digital filters. IEEE Trans. Circuits Syst. 29, 639–642 (1982). https://doi.org/10.1109/TCS.1982.1085194

    Article  Google Scholar 

  16. S. Faruque, M. Vlach, J. Vlach, K. Singhal, T. Viswanathan, FDNR switched-capacitor filters insensitive to parasitic capacitances. IEEE Trans. Circuits Syst. 29, 589–595 (1982)

    Article  Google Scholar 

  17. N. Fliege, A new class of second-order RC-active filters with two operational amplifiers. Nachrichtentech Zeitung 26, 279–282 (1973)

    Google Scholar 

  18. V. Ganapathy, C. Eswaran, A. Antoniou, Improved GIC digital filter structures. IEEE Trans. Circuits Syst. 30, 49–51 (1983). https://doi.org/10.1109/TCS.1983.1085274

    Article  Google Scholar 

  19. R.L. Geiger, E. Sánchez-Sinencio, Active filter design using operational transconductance amplifiers: a tutorial. IEEE Circuits Dev. Mag. 1, 20–32 (1985). https://doi.org/10.1109/MCD.1985.6311946

    Article  Google Scholar 

  20. R. Genin, A sine wave generator using a frequency-dependent negative conductance. Proc. IEEE 63, 1611–1612 (1975). https://doi.org/10.1109/PROC.1975.10010

    Article  Google Scholar 

  21. M. Ghausi, Analog active filters. IEEE Trans. Circuits Syst. 31, 13–31 (1984). https://doi.org/10.1109/TCS.1984.1085416

    Article  MATH  Google Scholar 

  22. P. Gupta, M. Srivastava, New frequency dependent negative conductance simulator employing VDTAs and grounded capacitances, in 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN), pp. 275–279 (2018). https://doi.org/10.1109/SPIN.2018.8474103

  23. M. Higashimura, Y. Fukui, Novel lossless tunable floating FDNR simulation using two current conveyors and a buffer. Electron. Lett. 22, 938–939 (1986)

    Article  Google Scholar 

  24. M. Higashimura, Y. Fukui, New lossless tunable floating FDNR simulation using two current conveyors and an INIC. Electron. Lett. 23, 529–531 (1987)

    Article  Google Scholar 

  25. F. Kaçar, H. Kuntman, On the realization of the FDNR simulators using only a single current feedback operational amplifier, in 2009 International Conference on Electrical and Electronics Engineering—ELECO 2009, vol II, pp. 223–226 (2009). https://doi.org/10.1109/ELECO.2009.5355319

  26. F. Kacar, B. Metin, H. Kuntman, A new CMOS dual-X second generation current conveyor (DXCCII) with an FDNR circuit application. Int. J. Electron. Commun. (AE U) 64, 774–778 (2010)

    Article  Google Scholar 

  27. I.A. Khan, M.T. Ahmed, N. Minhaj, Generalized impedance converters with only transconductance elements and grounded capacitors. Active Passive Elec. Comp. 25, 265–269 (2002)

    Article  Google Scholar 

  28. A. Leuciuc, L. Goras, New general immittance converter JFET voltage-controlled impedances and their applications to controlled biquads synthesis. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 45, 678–682 (1998). https://doi.org/10.1109/81.678494

    Article  Google Scholar 

  29. K. Martin, A.S. Sedra, Optimum design of active filters using the generalized immittance converter. IEEE Trans. Circuits Syst. 24, 495–503 (1977)

    Article  MATH  Google Scholar 

  30. R.E. Massara, A.R. Ai-Najjar, FDNR realization of all-pole low-pass filters. IEE Proc. G (Electron. Circuits Syst.) 128, 195–197 (1981)

    Article  Google Scholar 

  31. W.B. Mikhael, B.B. MBhattacharyya, A practical design for insensitive RC-filters. IEEE Trans. Circuits Syst. CAS22, 407–425 (1975)

    Article  Google Scholar 

  32. I.T.M. Mishonov, I.M. Dimitrova, N.S. Serafimov, E.G. Petkov, A.M. Varonov, Q-factor of the resonators with Frequency Dependent Negative Resistor. IEEE Trans. Circuits Syst. II Express Briefs 29, 946–950 (2022)

    Google Scholar 

  33. F. Molo, Parallel resonator with a resistance and a frequency dependent negative resistance realized with a single operational amplifier. IEEE Trans. Circuits Syst. 21, 783–788 (1974). https://doi.org/10.1109/TCS.1974.1083941

    Article  Google Scholar 

  34. S. Montree, A. Chairat, P. Nitchamon, P. Kangwal, A simple grounded FDNR based-on CDTRA and its application for a sinusoidal oscillator. J. King Mongkut's Univ. Technol. (2017). https://doi.org/10.14416/j.kmutnb.2017.11.005

  35. S. Nandi, P.B. Jana, R. Nandi, Floating ideal FDNR using current conveyors. Electron. Lett. 19, 251 (1983)

    Article  Google Scholar 

  36. S. Nandi, P.B. Jana, R. Nandi, Novel floating ideal tunable FDNR simulation using current conveyors. IEEE Trans. Circuits Syst. 31, 402–403 (1984)

    Article  Google Scholar 

  37. P.R. Padukone, J. Mulawka, M.S. Ghausi, An active biquadratic section with reduced sensitivity to operational amplifier imperfections. J. Frankl. Inst. 310, 27–40 (1980)

    Article  Google Scholar 

  38. K. Ramakrishna, L.T. Bruton, Noise minimization in RC-active filters using generalized impedance converters. Int. J. Circuit Theory Appl. 6, 135–145 (1978)

    Article  Google Scholar 

  39. K. Ramakrishna, K. Rajgopal, On the design of RC-active highpass filters using 2-OA GIC. Can. Electr. Eng. J. 10, 69–75 (1985)

    Article  Google Scholar 

  40. R. Raut, M.N.S. Swamy, Modern Analog Filter Analysis and Design: A Practical Approach, 1st edn. (Wiley-VCH, New York, 2011)

    Google Scholar 

  41. R.I. Salawu, Realization of frequency dependent negative resistance. Microelectron. Reliab. 20, 853–857 (1980). https://doi.org/10.1016/0026-2714(80)90009-8

    Article  Google Scholar 

  42. A.S. Sedra, P.O. Brackett, Filter Theory and Design: Active and Passive (Matrix Publishers, Delhi., 1978)

    Google Scholar 

  43. R. Senani, Floating ideal FDNR using only two current conveyors. IEE Electron. Lett. 20, 205–206 (1984)

    Article  Google Scholar 

  44. A.K. Singh, P. Kumar, R. Senani, New grounded immittance simulators employing a single CFCC. J. Eng. 2017, 435–447 (2017). https://doi.org/10.1049/joe.2017.0131

    Article  Google Scholar 

  45. A.M. Soliman, Realization of frequency dependent negative resistance circuits using two capacitors and a single current conveyor. IEE Proc. 125, 1336–1337 (1978)

    Google Scholar 

  46. A.M. Soliman, Generation of oscillators based on grounded capacitor current conveyors with minimum passive components. J. Circuits Syst. Comput. 18, 857–873 (2009)

    Article  Google Scholar 

  47. A.M. Soliman, R.A. Saad, Two new families of floating FDNR circuits. J. Electr. Comput. Eng. 563761, 1–7 (2010). https://doi.org/10.1155/2010/563761

    Article  Google Scholar 

  48. R. Thimm, Realization of active band-pass filters using non-ideal impedance converters, in Proceedings of ISCAS (1976)

  49. L. Tomawski, A resonant bridge with frequency-dependent negative resistance. IEEE Trans. Instrum. Meas. 37, 45–48 (1988). https://doi.org/10.1109/19.2661

    Article  Google Scholar 

  50. A.B. Williams, Electronic Filter Design Handbook (McGraw-Hill, New York, 1981)

    Google Scholar 

  51. A.T. Younis, R.E. Massara, On the design of optimal switched-capacitor filters based on the use of Lossy frequency dependent negative resistance prototype structures. IEE Proc. G (Circuits Dev. Syst.) 136, 351–357 (1989). https://doi.org/10.1049/ip-g-2.1989.0058

    Article  Google Scholar 

  52. H. Zumbahlen (ed), Chapter 8, in Linear Circuit Design Handbook (2008). https://www.analog.com/.../Basic-Linear-Design/Chapter8.pdf

Download references

Acknowledgements

The author wishes to thank the reviewers for their insightful comments and suggestions which have improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Ananda Mohan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, P.V.A. Analysis of GIC-Based Frequency-Dependent Negative Resistance-Based Filters. Circuits Syst Signal Process 42, 2433–2451 (2023). https://doi.org/10.1007/s00034-022-02234-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02234-w

Keywords

Navigation