Skip to main content
Log in

Low-Complexity DOA Estimation for Uniform Circular Arrays with Directional Sensors Using Reconfigurable Steering Vectors

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In the direction-of-arrival (DOA) estimation methods for uniform circular arrays (UCAs) with directional sensors, the high computational complexity arises when achieving the estimation accuracy by leveraging all the sensors in the element space. We present a low-complexity sectorized DOA estimation scheme for directional UCAs. It models the radiation pattern within half-power bandwidth in a closed mathematical expression and thereby constructs reconfigurable sectorized steering vectors of an arbitrary angular sector by using the Hadamard cyclic vector with the Vandermonde structure. The DOA estimation over the azimuth plane throughout the element space is transformed to DOA estimates within multiple individual angular sectors. The new scheme comprises three stages, i.e., submatrix extraction, sectorized weighted beamforming and sector DOA estimation. The feasibility and effectiveness of the proposed scheme are validated by numerical simulations. The simulation results demonstrate that, compared to the previous sector-free DOA estimation methods based on the entire azimuth plane, our scheme has a low hardware and computational complexity under an acceptable estimation error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data supporting the results of this study can be obtained from the corresponding author upon reasonable request.

References

  1. T. Aksoy, T. Engin Tuncer, Sectorized approach and measurement reduction for mutual coupling calibration of non-omnidirectional antenna arrays. Radio Sci. 48(2), 102–110 (2013). https://doi.org/10.1002/rds.20017

    Article  Google Scholar 

  2. J.G. Andrews, T.Y. Bai, M.N. Kulkarni et al., Modeling and analyzing millimeter wave cellular systems. IEEE Trans. Commun. 65(1), 403–430 (2017). https://doi.org/10.1109/TCOMM.2016.2618794

    Article  Google Scholar 

  3. T.Y. Bai, R.W. Heath, Coverage and rate analysis for millimeter-wave cellular networks. IEEE Trans. Wirel. Commun. 14(2), 1100–1114 (2015). https://doi.org/10.1109/TWC.2014.2364267

    Article  Google Scholar 

  4. F. Belloni, V. Koivunen, Beamspace transform for UCA: error analysis and bias reduction. IEEE Trans. Signal Process. 54(8), 3078–3089 (2006). https://doi.org/10.1109/TSP.2006.877664

    Article  MATH  Google Scholar 

  5. M.L. Bencheikh, Y. Wang, H. He, Polynomial root finding technique for joint DOA-DOD estimation in bistatic MIMO radar. Signal Process. 90(9), 2723–2730 (2010). https://doi.org/10.1016/j.sigpro.2010.03.023

    Article  MATH  Google Scholar 

  6. M.Q. Chen, X.P. Mao, R. Guo et al., Design methods for ULA-based directional antenna arrays by shaping the Cramer-Rao bound functions. IET Signal Process 12(2), 247–254 (2017)

    Article  Google Scholar 

  7. M. Chryssomallis, Smart antennas. IEEE Antennas Propag. Mag. 42(3), 129–136 (2000). https://doi.org/10.1109/74.848965

    Article  Google Scholar 

  8. N. Deng, M. Haenggi, A novel approximate antenna pattern for directional antenna arrays. IEEE Wirel. Commun. Lett. 7(5), 832–835 (2018). https://doi.org/10.1109/LWC.2018.2829741

    Article  Google Scholar 

  9. M. Doron, E. Doron, Wavefield modeling and array processing. II. Algorithms. IEEE Trans. Signal Process 42(10), 2560–2570 (1994). https://doi.org/10.1109/78.324723

    Article  Google Scholar 

  10. H. Fu, S. Abeywickrama, C. Yuen et al., A robust phase-ambiguity-immune DOA estimation scheme for antenna array. IEEE Trans. Veh. Technol. 68(7), 6686–6696 (2019). https://doi.org/10.1109/TVT.2019.2916171

    Article  Google Scholar 

  11. V. Garg, P. Giménez-Febrer, A. Pagès-Zamora et al., DOA estimation via shift-invariant matrix completion. Signal Process. 183(107), 993 (2021). https://doi.org/10.1016/j.sigpro.2021.107993

    Article  Google Scholar 

  12. H. Gazzah, J.P. Delmas, CRB-based design of linear antenna arrays for near-field source localization. IEEE Trans. Antennas Propag. 62(4), 1965–1974 (2014). https://doi.org/10.1109/TAP.2014.2298882

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Gazzah, J.P. Delmas, S.M. Jesus, Direction-finding arrays of directional sensors for randomly located sources. IEEE Trans. Aerosp. Electron. Syst. 52(4), 1995–2003 (2016)

    Article  Google Scholar 

  14. B.R. Jackson, S. Rajan, B.J. Liao et al., Direction of arrival estimation using directive antennas in uniform circular arrays. IEEE Trans. Antennas Propag. 63(2), 736–747 (2015)

    Article  Google Scholar 

  15. H. Ketabalian, M. Biguesh, A. Sheikhi, A closed-form solution for localization based on RSS. IEEE Trans. Aerosp. Electron. Syst. 56(2), 912–923 (2020). https://doi.org/10.1109/TAES.2019.2929998

    Article  Google Scholar 

  16. J.C. Koech, P.G. Wiid, D.I. de Villiers, Hyperband antenna design for RFI testing. in 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA), Granada, Spain, pp 280–285, (2019). https://doi.org/10.1109/ICEAA.2019.8879076

  17. H. Krim, M. Viberg, Two decades of array signal processing research: the parametric approach. IEEE Signal Process. Mag. 13(4), 67–94 (1996). https://doi.org/10.1109/79.526899

    Article  Google Scholar 

  18. B. Liao, K.M. Tsui, S.C. Chan, Frequency invariant uniform concentric circular arrays with directional elements. IEEE Trans. Aerosp. Electron. Syst. 49(2), 871–884 (2013). https://doi.org/10.1109/TAES.2013.6494386

    Article  Google Scholar 

  19. H.T. Liu, S. Gao, T.H. Loh, Compact mimo antenna with frequency reconfigurability and adaptive radiation patterns. IEEE Antennas Wirel. Propag. Lett. 12, 269–272 (2013). https://doi.org/10.1109/LAWP.2013.2245493

    Article  Google Scholar 

  20. C. Mathews, M. Zoltowski, Eigenstructure techniques for 2-D angle estimation with uniform circular arrays. IEEE Trans. Signal Process. 42(9), 2395–2407 (1994). https://doi.org/10.1109/78.317861

    Article  Google Scholar 

  21. F.E.D. Raimondi, P. Comon, Tensor DOA estimation with directional elements. IEEE Signal Process. Lett. 24(5), 648–652 (2017). https://doi.org/10.1109/LSP.2017.2685244

    Article  Google Scholar 

  22. J.P. Shi, F.Q. Wen, T.P. Liu, Nested mimo radar: Coarrays, tensor modeling, and angle estimation. IEEE Trans. Aerosp. Electron. Syst. 57(1), 573–585 (2021). https://doi.org/10.1109/TAES.2020.3034012

    Article  Google Scholar 

  23. P. Stoica, E. Larsson, A. Gershman, The stochastic CRB for array processing: a textbook derivation. IEEE Signal Process. Lett. 8(5), 148–150 (2001). https://doi.org/10.1109/97.917699

    Article  Google Scholar 

  24. H. Wang, Z.J. Zhang, Y. Li et al., A switched beam antenna with shaped radiation pattern and interleaving array architecture. IEEE Trans. Antennas Propag. 63(7), 2914–2921 (2015). https://doi.org/10.1109/TAP.2015.2422838

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Werner, J. Wang, A. Hakkarainen et al., Performance and Cramer-Rao bounds for DOA/RSS estimation and transmitter localization using sectorized antennas. IEEE Trans. Veh. Technol. 65(5), 3255–3270 (2016). https://doi.org/10.1109/TVT.2015.2445317

    Article  Google Scholar 

  26. D. Zhao, W.J. Tan, Z.L. Deng et al., Low complexity sparse beamspace DOA estimation via single measurement vectors for uniform circular array. EURASIP J. Adv. Signal Process. 1, 54 (2021). https://doi.org/10.1186/s13634-021-00770-2

    Article  Google Scholar 

  27. M.D. Zoltowski, G.M. Kautz, S.D. Silverstein, Simultaneous sector processing via root-music for large sensor arrays, in Fifth ASSP Workshop on Spectrum Estimation and Modeling (Rochester, USA, 1990), pp. 372–376

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zhongliang Deng and Weijie Tan have contributed equally to this work.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Deng, Z. & Tan, W. Low-Complexity DOA Estimation for Uniform Circular Arrays with Directional Sensors Using Reconfigurable Steering Vectors. Circuits Syst Signal Process 42, 1685–1706 (2023). https://doi.org/10.1007/s00034-022-02188-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02188-z

Keywords

Navigation