Skip to main content
Log in

Heart Sound Classification Using Deep Learning Techniques Based on Log-mel Spectrogram

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this study, two models for classifying heart rate sounds are proposed to classify heart sound by deep learning techniques based on the log-mel spectrogram of heart sound signals. The heart sound dataset comprises five classes, one normal class and four anomalous classes, namely, Aortic Stenosis, Mitral Regurgitation, Mitral Stenosis, and Murmur in systole. First, the heart sound signals are framed to a consistent length and thereafter extract the log-mel spectrogram features. Two deep learning models, long short-term memory and convolution neural network are proposed to classify heartbeat sounds based on the extracted features. Analysis results demonstrated the high performance of classification models, with an overall accuracy of about 99.67%. The results also showed higher performance compared to previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from “Classification-of-Heart-Sound-Signal-Using-Multiple-Features.” https://github.com/yaseen21khan/Classification-of-Heart-Sound-Signal-Using-Multiple-Features-/find/master. The processed data and program are available in https://github.com/tuanktcs/Heart-sound-classification.

References

  1. S. Albawi, T.A. Mohammed, S. Al-Zawi, Understanding of a convolutional neural network. Int. Conf. Eng. Technol. 23, 1–6 (2017)

    Google Scholar 

  2. P. Bentley, G. Nordehn, M. Coimbra, S. Mannor, and R. Getz, Retrieved from Classifying Hear. Sounds Chall. Http//Www. Peterjbentley. Com/Heartchallenge (2011).

  3. F. Beritelli, G. Capizzi, G. Lo Sciuto, C. Napoli, F. Scaglione, Automatic heart activity diagnosis based on Gram polynomials and probabilistic neural networks. Biomed. Eng. Lett. 8, 77 (2018)

    Article  Google Scholar 

  4. B. Bozkurt, I. Germanakis, Y. Stylianou, A study of time-frequency features for CNN-based automatic heart sound classification for pathology detection. Comput. Biol. Med. 100, 132 (2018)

    Article  Google Scholar 

  5. “Cardiovascular Diseases. 2021.” https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1.

  6. L. Chen, J. Ren, Y. Hao, X. Hu, The diagnosis for the extrasystole heart sound signals based on the deep learning. J. Med. Imaging Heal. Inf. 8, 959 (2018)

    Article  Google Scholar 

  7. G. Clifford, C. Liu, D. Springer, B. Moody, Q. Li, R. Abad, J. Millet, I. Silva, A. Johnson, R. Mark, Classification of normal/abnormal heart sound recordings: the Physionet/computing in cardiology challenge 2016. Physiol. Meas. 37, 2181 (2016)

    Google Scholar 

  8. “Classification-of-Heart-Sound-Signal-Using-Multiple-Features.” https://github.com/yaseen21khan/Classification-of-Heart-Sound-Signal-Using-Multiple-Features-/find/master.

  9. B.S. Emmanuel, A review of signal processing techniques for heart sound analysis in clinical diagnosis. J. Med. Eng. Technol. 36, 303 (2012)

    Article  Google Scholar 

  10. A. Gharehbaghi, T. Dutoit, P. Ask, L. Sörnmo, Detection of systolic ejection click using time growing neural network. Med. Eng. Phys. 36, 477 (2014)

    Article  Google Scholar 

  11. B. J. Gersh, Mayo Clinic Heart Book (W. Morrow, 2000).

  12. H.L. Her, H.W. Chiu, Using time-frequency features to recognize abnormal heart sounds. Comput. Cardiol. 450, 1145–1147 (2010)

    Google Scholar 

  13. S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural Comput. 9, 1735 (1997)

    Article  Google Scholar 

  14. S. Karpagachelvi, M. Arthanari, M. Sivakumar, ECG feature extraction techniques - a survey approach. Int. J. Comput. Sci. Inf. Secur. 8, 76 (2010)

    Google Scholar 

  15. S. Latif, M. Usman, R. Rana, J. Qadir, Phonocardiographic sensing using deep learning for abnormal heartbeat detection. IEEE Sens. J. 18, 9393 (2018)

    Article  Google Scholar 

  16. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436 (2015)

    Article  Google Scholar 

  17. C. Liu, D. Springer, Q. Li, B. Moody, R.A. Juan, F.J. Chorro, F. Castells, J.M. Roig, I. Silva, A.E.W. Johnson, Z. Syed, S.E. Schmidt, C.D. Papadaniil, L. Hadjileontiadis, H. Naseri, A. Moukadem, A. Dieterlen, C. Brandt, H. Tang, M. Samieinasab, M.R. Samieinasab, R. Sameni, R.G. Mark, G.D. Clifford, An open access database for the evaluation of heart sound algorithms. Physiol. Meas. 37, 2181 (2016)

    Article  Google Scholar 

  18. S. A. Morris, T. C. Slesnick, Magnetic Resonance Imaging, Vis. Guid. to Neonatal Cardiol. (John Wiley & Sons Ltd, Chichester, UK, 2018), pp. 104–108.

  19. P. Narváez, S. Gutierrez, W.S. Percybrooks, Automatic segmentation and classification of heart sounds using modified empirical wavelet transform and power features. Appl. Sci. 10, 4791 (2020)

    Article  Google Scholar 

  20. M. Nassralla, Z. El Zein, H. Hajj, Automatic heart activity diagnosis based on Gram polynomials and probabilistic neural networks. Fourth Int. Conf. Adv. Biomed. Eng. 1, 1–4 (2017)

    Google Scholar 

  21. S.L. Oh, V. Jahmunah, C.P. Ooi, R.-S. Tan, E.J. Ciaccio, T. Yamakawa, M. Tanabe, M. Kobayashi, U. Rajendra Acharya, Classification of heart sound signals using a novel deep WaveNet model. Comput. Methods Programs Biomed. 196, 105604 (2020)

    Article  Google Scholar 

  22. C. M. Otto, Textbook of Clinical Echocardiography (Elsevier Health Sciences, 2013).

  23. C. Potes, S. Parvaneh, A. Rahman, B. Conroy, Ensemble of feature-based and deep learning-based classifiers for detection of abnormal heart sounds. Comput. Cardiol. 220, 621–624 (2010)

    Google Scholar 

  24. A. Raza, A. Mehmood, S. Ullah, M. Ahmad, G.S. Choi, B.W. On, Heartbeat sound signal classification using deep learning. Sensors (Switz) 19(21), 4819 (2019)

    Article  Google Scholar 

  25. J. O. Smith, Math. Disc. Fourier Trans. (DFT): With Audio Appl. (Julius Smith, 2007).

  26. M. Sotaquirá, D. Alvear, M. Mondragón, Phonocardiogram classification using deep neural networks and weighted probability comparisons. J. Med. Eng. Technol. 42, 510 (2018)

    Article  Google Scholar 

  27. V.G. Sujadevi, K.P. Soman, R. Vinayakumar, A.U.P. Sankar, Deep models for phonocardiography (PCG) classification. Int. Conf. Intell. Commun. Comput. Tech. 88, 211–216 (2017)

    Google Scholar 

  28. M. Ter-Pogossian, E. Weiss, R. Coleman, B. Sobel, Computed tomography of the heart. Am. J. Roentgenol. 127, 79 (1976)

    Article  Google Scholar 

  29. M. Tschannen, T. Kramer, G. Marti, M. Heinzmann, T. Wiatowski, Heart sound classification using deep structured features. Comput. Cardiol. Conf. 152, 565–568 (2016)

    Google Scholar 

  30. H. Uğuz, Adaptive neuro-fuzzy inference system for diagnosis of the heart valve diseases using wavelet transform with entropy. Neural Comput. Appl. 21, 1617 (2012)

    Article  Google Scholar 

  31. A. Varga-Szemes, F.G. Meinel, C.N. De Cecco, S.R. Fuller, R.R. Bayer, U.J. Schoepf, CT myocardial perfusion imaging. Am. J. Roentgenol. 204, 487 (2015)

    Article  Google Scholar 

  32. J.M.-T. Wu, M.-H. Tsai, Y.Z. Huang, S.K.H. Islam, M.M. Hassan, A. Alelaiwi, G. Fortino, Applying an ensemble convolutional neural network with Savitzky-Golay filter to construct a phonocardiogram prediction model. Appl. Soft Comput. 78, 29 (2019)

    Article  Google Scholar 

  33. G.Y.S. Yaseen, S. Kwon, Classification of heart sound signal using multiple features. Appl. Sci. 8, 2344 (2018)

    Article  Google Scholar 

  34. M. Zabihi, A. Bahrami Rad, S. Kiranyaz, M. Gabbouj, A.K. Katsaggelos, Heart sound anomaly and quality detection using ensemble of neural networks without segmentation. CinC. 43, 613–616 (2016)

    Google Scholar 

  35. W. Zhang, J. Han, Towards heart sound classification without segmentation using convolutional neural network. Comput. Cardiol. 13, 1–4 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh Tuan Nguyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, M.T., Lin, W.W. & Huang, J.H. Heart Sound Classification Using Deep Learning Techniques Based on Log-mel Spectrogram. Circuits Syst Signal Process 42, 344–360 (2023). https://doi.org/10.1007/s00034-022-02124-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02124-1

Keywords

Navigation