Skip to main content
Log in

Analysis of ECG Signal by Using an FCN Network for Automatic Diagnosis of Obstructive Sleep Apnea

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Obstructive sleep apnea (OSA) is a sleep disorder in which a person’s breathing is repeatedly interrupted because of airway obstruction. This study presents a fully convolutional neural network to diagnose the OSA by analyzing the single–lead ECG signal. This model does not employ any fully connected layers for classification, and the entire model only consists of 1D convolutional, activation, Pooling, and Batch Normalization layers. The main idea behind this model is to make decisions based on local segments of the signal, and the final classification is performed by aggregation of all decisions. This model implements the divide and conquer problem–solving method within a deep learning structure by the joint use of a convolutional layer and a global average pooling instead of a dense layer for classification. It was trained and evaluated by using a dataset available on the Physionet website. The accuracy of the proposed model outperformed other algorithms, which employ single lead ECG for the diagnosis of OSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.M. Al–Angari, A.V. Sahakian, Automated recognition of obstructive sleep apnea syndrome using support vector machine classifier. IEEE Trans. Inf. Technol. Biomed 16(3), 463–468 (2012). https://doi.org/10.1109/TITB.2012.2185809

    Article  Google Scholar 

  2. L. Almazaydeh, K. Elleithy, M. Faezipour, Obstructive Sleep Apnea Detection Using SVM–Based Classification of ECG Signal Features, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego. CA; 4938–4941 (2012). https://doi.org/10.1109/EMBC.2012.6347100

  3. D. Álvarez–Estévez, V. Moret–Bonillo, Fuzzy reasoning used to detect apneic events in the sleep apnea–hypopnea syndrome. Expert Syst. Appl. 36(4), 7778–7785 (2009). https://doi.org/10.1016/j.eswa.2008.11.043

    Article  Google Scholar 

  4. S. Babaeizadeh, D.P. White, S.D. Pittman, S.H. Zhou, Automatic detection and quantification of sleep apnea using heart rate variability. J. Electrocardiol 43(6), 535–541 (2010). https://doi.org/10.1016/j.jelectrocard.2010.07.003

    Article  Google Scholar 

  5. F. Barbé, J. Pericas, A. Munoz, L. Findley, J.M. Anto, A.G. Agusti, Automobile accidents in patients with sleep apnea syndrome: an epidemiological and mechanistic study. A J. Res. Crit. Care Med. 158(1), 18–22 (1998). https://doi.org/10.1164/ajrccm.158.1.9709135

    Article  Google Scholar 

  6. L. Bi, D. Feng, J. Kim, Dual–path adversarial learning for Fully Convolutional Network (FCN)–based medical image segmentation. Vis. Comput. 34, 1043–1052 (2018). https://doi.org/10.1007/s00371-018-1519-5

    Article  Google Scholar 

  7. N. Botros, J. Concato, V. Mohsenin, B. Selim, K. Doctor, H.K. Yaggi, Obstructive sleep apnea as a risk factor for type 2 diabetes. Am. J. Med. 122(12), 1122–1127 (2009). https://doi.org/10.1016/j.amjmed.2009.04.026

    Article  Google Scholar 

  8. L. Chen, X. Zhang, C. Song, An automatic screening approach for obstructive sleep apnea diagnosis based on single–lead electrocardiogram. IEEE T. Autom. Sci. Eng. 12(1), 106–115 (2015). https://doi.org/10.1109/TASE.2014.2345667

    Article  Google Scholar 

  9. M. Cheng, W.J. Sori, F. Jiang, A. Khan, S. Liu, Recurrent neural network–based classification of ECG signal features for obstruction of sleep apnea detection, In Computational Science and Engineering (CSE) and Embedded and Ubiquitous Computing (EUC), 199–202 (2017). https://doi.org/10.1109/CSE-EUC.2017.220

  10. S.H. Choi, H. Yoon, H.S. Kim, H.B. Kim, H.B. Kwon, S.M. Oh, K.S. Park, Real–time apnea hypopnea event detection during sleep by convolutional neural networks. Comput. Biol. Med. 100, 123–131 (2018). https://doi.org/10.1016/j.compbiomed.2018.06.028

    Article  Google Scholar 

  11. F. Chollet, Deep learning with python; pp 70:71 (2018)

  12. F. Chollet, Keras (2015). http://keras.io/

  13. J.A. Dempsey, S.C. Veasey, B.J. Morgan, C.P.O. Donnell, Pathophysiology of sleep apnea. Physiol Rev 90(1), 47–112 (2008). https://doi.org/10.1152/physrev.00043.2008

    Article  Google Scholar 

  14. U. Erdenebayar, Y.J. Kim, J.U. Park, E.Y. Joo, K.J. Lee, Deep learning approaches for automatic detection of sleep apnea events from an electrocardiogram. Computer Methods Programs Biomed (2019). https://doi.org/10.1016/j.cmpb.2019.105001

    Article  Google Scholar 

  15. U. Erdenebayar, J.U. Park, E.Y. Joo, K.J. Lee, Automated detection of obstructive sleep apnea events from a single–lead electrocardiogram using a convolutional neural network. Mobile Wireless Health 104, 1–8 (2018)

    Google Scholar 

  16. A. Graves, A.R. Mohamed, G. Hinton, Speech recognition with deep recurrent neural networks, In Acoustics, Speech and Signal Processing (ICASSP), 6645–6649 (2013). https://doi.org/10.1109/ICASSP.2013.6638947

  17. D.J. Gottlieb, G. Yenokyan, A.B. Newman, G.T. O’Connor, N.M. Punjabi, S.F. Quan, S. Redline, H.E. Resnick, E.K. Tong, M. Diener–West, E. Shahar, Prospective study of obstructive sleep apnea and incident coronary heart disease and heart failure, sleep heart health study. Circulation 122(4), 352–360 (2010). https://doi.org/10.1161/CIRCULATIONAHA.109.901801

    Article  Google Scholar 

  18. A.R. Hassan, M.A. Haque, An expert system for automated identification of obstructive sleep apnea from single–lead ECG using random under sampling boosting. Neurocomputing 235, 122–130 (2017). https://doi.org/10.1016/j.neucom.2016.12.062

    Article  Google Scholar 

  19. G. Hinton, L. Deng, D. Yu, G.E. Dahl, A.R. Mohamed, N. Jaitly, B. Kingsbury, Deep neural networks for acoustic modeling in speech recognition, The shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012). https://doi.org/10.1109/MSP.2012.2205597

    Article  Google Scholar 

  20. A. Jafari, Sleep apnea detection from ECG using features extracted from reconstructed phase space and frequency domain. Biomed. Signal Process. Control 8, 551–558 (2013). https://doi.org/10.1016/j.bspc.2013.05.007

    Article  Google Scholar 

  21. A. Khandoker, C. Karmakar, M. Palaniswami, Automated recognition of patients with obstructive sleep apnea using wavelet–based features of electrocardiogram recordings. Comput. Biol. Med 39, 88–96 (2009). https://doi.org/10.1109/TITB.2012.2185809

    Article  Google Scholar 

  22. S. Kiranyaz, T. Ince, M. Gabbouj, Real–time patient–specific ECG classification by 1–D convolutional neural networks. IEEE Trans. Biomed. Eng. 63(3), 664–675 (2016). https://doi.org/10.1109/TBME.2015.2468589

    Article  Google Scholar 

  23. A. Krizhevsky, I. Sutskever, G. Hinton, Image–net classification with deep convolutional neural Networks, In Advances in Neural Information Processing Systems; 25s, 1106–1114 (2012)

  24. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  25. J.V. Marcos, R. Hornero, D. Alvarez, M. Aboy, F. Del Campo, Automated prediction of the apnea–hypopnea index from nocturnal oximetry recordings. IEEE Trans. Biomed. Eng. 59(1), 141–149 (2012). https://doi.org/10.1109/TBME.2011.2167971

    Article  Google Scholar 

  26. J. Marcos, R. Hornero, D. Álvarez, F. Del Campo, M. Aboy, Automated detection of obstructive sleep apnea syndrome from oxygen saturation recordings using linear discriminant analysis. Med. Biol. Eng. Comput. 48, 895–902 (2010). https://doi.org/10.1007/s11517-010-0646-6

    Article  Google Scholar 

  27. M.O. Mendez, J. Corthout, H.S. Van, M. Matteucci, T. Penzel, S. Cerutti, A.M. Bianchi, Automatic screening of obstructive sleep apnea from the ECG based on empirical mode decomposition and wavelet analysis. Physiol. Meas. 31(3), 273–289 (2010). https://doi.org/10.1088/0967-3334/31/3/001

    Article  Google Scholar 

  28. T. Mikolov, M. Karafiát, L. Burget, J. Černocký, S. Khudanpur, Recurrent neural network–based language Model, In INTERSPEECH, 1045–1048 (2010)

  29. A. Nishad, R.B. Pachori, U.R. Acharya, Application of TQWT based filter–bank for sleep apnea screening using ECG signals, J. Ambient Intell. Humaniz. Comput, 1–12 (2018). https://doi.org/10.1007/s12652-018-0867-3

  30. R.K. Pathinarupothi, E.S. Rangan, E.A. Gopalakrishnan, R.K.P. Vinaykumar, Soman, Single Sensor Techniques for Sleep Apnea Diagnosis using Deep Learning, IEEE J. Biomed. Health Inform, 524–529 (2017). https://doi.org/10.1109/ICHI.2017.37.

  31. Peltarion.com/knowledge–center/documentation/modeling–view/build–an–ai–model/loss–functions/binary–crossentropy

  32. T. Penzel, G.B.M. Rg, M.A.L. Goldberges, Peter H.: The Apnea–ECG Database; pp 255–258 (2000)

  33. P.E. Peppard, M. Szklo–Coxe, K.M. Hla, T. Young, longitudinal association of sleep–related breathing disorder and depression. Arch. Intern. Med. 166, 1709–1715 (2006). https://doi.org/10.1001/archinte.166.16.1709

    Article  Google Scholar 

  34. L.V. Pham, A.R. Schwartz, The pathogenesis of obstructive sleep apnea, J. Thorac Dis., 7(8):1358–1372, (2015). https://doi.org/10.3978/j.issn.2072-1439.2015.07.28. 7(8): 1439–2072

  35. N.M. Punjabi, The epidemiology of adult obstructive sleep apnea. Proc. Am. Thorac. Soc. 5, 136–143 (2008). https://doi.org/10.1513/pats.200709-155MG

    Article  Google Scholar 

  36. D. Ravi, C. Wong, F. Deligianni, M. Berthelot, J.A. Perez, B. Lo, G.Z. Yang, Deep learning for health Informatics. IEEE J. Biomed. Health Inform 21(1), 4–21 (2016). https://doi.org/10.1109/JBHI.2016.2636665

    Article  Google Scholar 

  37. M. Sharma, S. Agarwal, U.R. Acharya, Application of an optimal class of antisymmetric wavelet filter banks for obstructive sleep apnea diagnosis using ECG signals. Comput. Biol. Med. 100, 100–113 (2018). https://doi.org/10.1016/j.compbiomed.2018.06.011

    Article  Google Scholar 

  38. C. Song, K. Liu, X. Zhang, L. Chen, X. Xian, An obstructive sleep apnea detection approach using a discriminative hidden Markov model from ECG signals. IEEE Trans. Biomed. Eng. 9294(c), 1532–1542 (2015). https://doi.org/10.1109/TBME.2015.2498199

    Article  Google Scholar 

  39. I. Sutskever, O. Vinyals, Q.V. Le, Sequence to sequence learning with neural networks, Adv. Neural Inf. Process Syst.; 2, 3104–3112 (2014). arXiv: 1409.3215

  40. T. Tieleman, G. Hinton, Lecture 6.5—RMSProp, COURSERA: Neural Networks for Machine Learning.Technical report (2012)

  41. R.K. Tripathy, Application of intrinsic band function technique for automated detection of sleep apnea using HRV and EDR signals. Biocybern. Biomed. Eng. 38, 136–144 (2018). https://doi.org/10.1016/j.bbe.2017.11.003

    Article  Google Scholar 

  42. C. Varon, A. Caicedo, D. Testelmans, B. Buyse, S. Van Huffel, A novel algorithm for the automatic detection of sleep apnea from single–lead ECG. IEEE Trans Biomed Eng. 62(9), 2278–2296 (2015). https://doi.org/10.1109/TBME.2015.2422378

    Article  Google Scholar 

  43. C.S. Viswabhargav, R.K. Tripathy, U.R. Acharya, Automated detection of sleep apnea using sparse residual entropy features with various dictionaries extracted from heart rate and EDR signals. Comput. Biol. Med. 108, 20–30 (2019). https://doi.org/10.1016/j.compbiomed.2019.03.016

    Article  Google Scholar 

  44. A.N. Vgontzas, D.A. Papanicolaou, E.O. Bixler, K. Hopper, A. Lotsikas, H.M. Lin, A. Kales, G.P. Chrousos, Sleep apnea and daytime sleepiness and fatigue: relation to visceral obesity, insulin resistance, and Hypercytokinemia. J. Clin. Endocrinol. Metab 85(3), 1151–1158 (2000). https://doi.org/10.1210/jcem.85.3.6484

    Article  Google Scholar 

  45. A. Yildiz, M. Akın, M. Poyraz, An expert system for automated recognition of patients with obstructive sleep apnea using electrocardiogram recordings. Expert Syst. Appl 38, 12880–12890 (2011). https://doi.org/10.1016/j.eswa.2011.04.080

    Article  Google Scholar 

  46. A. Zarei, B.M. Asl, Automatic detection of obstructive sleep apnea using wavelet transform and entropy–based features from single–lead ECG signal. IEEE J. Biomed. Health Inf. 23(3), 1011–1021 (2018). https://doi.org/10.22489/CinC.2020.400

    Article  Google Scholar 

  47. Z. Zhang, W. Guo, W. Yu, W. Yu, Multi–task fully convolutional networks for building segmentation on SAR images. J. Eng. 20, 7074–7077 (2019). https://doi.org/10.1049/joe.2019.0569

    Article  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not–for–profit sectors.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Valizadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Data Availability

Available at https://physionet.org/physiobank/database/#ecg/

Code Availability

If needed, you can contact the corresponding author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayashm, S., Chehel Amirani, M. & Valizadeh, M. Analysis of ECG Signal by Using an FCN Network for Automatic Diagnosis of Obstructive Sleep Apnea. Circuits Syst Signal Process 41, 6411–6426 (2022). https://doi.org/10.1007/s00034-022-02091-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02091-7

Keywords

Navigation