Skip to main content
Log in

Complementary Current-Reused 3.7–11.9 GHz LNA Using Body-Floating and Self-Bias Technique for Sub-6 GHz 5G Communications

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this work, we report a single-voltage-supply-operated current-reused complementary 3.7–11.9 GHz CMOS low-noise amplifier (LNA) for sub-6 GHz 5G systems. The body-floating and self-forward-bias technique, i.e., the body of the transistor is connected to its drain through a large resistance (7.7 or 11.5 k \(\Omega\) in this work), is applied to the nMOS and the pMOS transistors. An auxiliary path is included in the input stage for better noise cancelling. An enhancement in S21 and noise figure (NF) is achieved due to the forward body-to-source bias (VBS) (i.e., small n/pMOS threshold voltage Vth,n/Vth,p) and the transistors being free from the substrate leakage. Low power is achieved since low supply voltage (VDD) of 1.2 V is applicable because of small Vth. An enhancement in bandwidth of the LNA is achieved due to the peaking inductors Lg1, Lg2, and Ld. The LNA consumes 7.3 mW and achieves prominent S21 of 8.1 ± 1.5 dB, NF of 3.02–5.2 dB, and IIP3 of 0.3 ~ − 1.3 dBm for 3.7–11.9 GHz. The chip area of the LNA is 0.34 mm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. A. Alizadeh, M. Meghdadi, M. Yaghoobi, A. Medi, Design of a 2–12-GHz bidirectional distributed amplifier in a 0.18-μm CMOS technology. IEEE Trans. Microw. Theory. Techn. 67(2), 754–764 (2019)

    Article  Google Scholar 

  2. M. Cen, S. Song, A high gain, low-power low-noise amplifier for ultra-wideband wireless systems. Circuits Syst. Signal Process. 33(10), 3251–3262 (2014)

    Article  MathSciNet  Google Scholar 

  3. J.F. Chang, Y.S. Lin, 3–9 GHz CMOS LNA using body floating and self-bias technique for sub-6 GHz 5G communications. IEEE Microw. Wirel. Compon. Lett. 31(6), 608–611 (2021)

    Article  Google Scholar 

  4. J.F. Chang, YS Lin (2022) 7.4-mW 22.7–29.7 GHz CMOS VGA with 23.7 dB (19.2~ -4.5 dB) gain tuning range and 32.6 dB NFavg IEEE Microw. Wireless Compon Lett 32(7), 1–4 (2022)

    Article  Google Scholar 

  5. HK Chen, YS Lin, SS Lu (2010) Analysis and design of a 16–28 GHz compact wideband LNA in 90 nm CMOS using a -match input network. IEEE Trans. Microw. Theory Techn. 58(8): 2092–2104.

  6. C.C. Chen, Y.C. Wang, A 2.4/5.2/5.8 GHz triple-band common-gate cascode CMOS low-noise amplifier. Circuits Syst Signal Process 36(9), 3477–3490 (2017).

  7. C.C. Chen, Y.C. Wang, A dual-wideband CMOS LNA using gain-bandwidth product optimization technique. Circuits Syst. Signal Process. 36(2), 495–510 (2017)

    Article  Google Scholar 

  8. M.L. Edwards, J.H. Sinsky, A new criterion for linear 2-port stability using a single geometrically derived parameter. IEEE Trans. Microw. Theory Techn. 40(12), 2303–2311 (1992)

    Article  Google Scholar 

  9. B. Guo, J. Chen, L. Li, H. Jin, G. Yang, A wideband noise-canceling CMOS LNA with enhanced linearity by using complementary nMOS and pMOS configurations. IEEE J. Solid-State Circuits 52(5), 1331–1344 (2017)

    Article  Google Scholar 

  10. A.R.A. Kumar, B.D. Sahoo, A. Dutta, A wideband 2–5 GHz noise canceling subthreshold low noise amplifier. IEEE Trans. Circuits Syst. II, Exp. Briefs 65(7), 834–838 (2018)

  11. J. Lee, S. Han, J. Lee, B. Kang, J. Bae, J. Jang, S. Oh, S. Ahn, S, Kang, Q.D. Bui, K. Son, H. Lim, D. Jeong, R. Ni, Y. Zuo, I. Jong, C.W. Yao, S. Heo, T.B. Cho, I. Kang, A sub-6-GHz 5G new radio RF transceiver supporting EN-DC with 3.15-Gb/s DL and 1.27-Gb/s UL in 14-nm FinFET CMOS. IEEE J. Solid-State Circuits 54(12), 3541–3552 (2019)

  12. W. Lee, S. Hong, 28 GHz RF front-end structure using CG LNA as a switch. IEEE Microw. Wirel. Compon. Lett. 30(1), 94–97 (2020)

    Article  Google Scholar 

  13. C.F. Liao, S.I. Liu, A broadband noise-canceling CMOS LNA for 3.1–10.6-GHz UWB receivers. IEEE J. Solid-State Circuits 42(2), 329–339 (2007)

  14. Y.S. Lin, J.F. Chang, S.S. Lu, Analysis and design of CMOS distributed amplifier using inductively-peaking cascaded gain cell for UWB systems. IEEE Trans. Microw. Theory Techn. 59(10), 2513–2524 (2011)

    Article  Google Scholar 

  15. Y.S. Lin, C.Z. Chen, H.Y. Yang, C.C. Chen, J.H. Lee, G.W. Huang, S.S. Lu, Analysis and design of a CMOS UWB LNA with dual-RLC-branch wideband input matching network. IEEE Trans. Microw. Theory Techn. 58(2), 287–296 (2010)

    Article  Google Scholar 

  16. Y.S. Lin, J.H. Lee, S.L. Huang, C.H. Wang, C.C. Wang, S.S. Lu, Design and analysis of a 21–29 GHz ultra-wideband receiver front-end in 0.18 µm CMOS technology. IEEE Trans. Microw. Theory Techn. 60(8), 2590–2604 (2012)

  17. X. Wang, A. Dinh, D. Teng, A 3–10 GHz ultra wideband receiver LNA in 0.13 µm CMOS. Circuits Syst. Signal Process. 33(6), 1669–1687 (2014)

  18. K. Yang, X. Yi, C.C. Boon, Z. Liang, G. Feng, C. Li, L. Bei, A parallel sliding-IF receiver front end with sub 2 dB noise figure for 5–6 GHz WLAN carrier aggregation,". IEEE J. Solid-State Circuits 56(2), 392–403 (2021)

    Article  Google Scholar 

  19. E.H.V. Yeh, A.H. Lo, W.S. Chen, T.J. Yeh, and M. Chen, A 16 nm FinFET 0.4 V inductor-less cellular receiver front-end with 10 mW ultra-low power and 0.31 mm2 ultra-small area for 5G system in sub-6 GHz band, in Symposium on VLSI Circuits (2017), pp. 1–2

  20. M.C. Yeh, Z.M. Tsai, R.C. Liu, K.Y. Lin, Y.T. Chang, H. Wang, Design and analysis for a miniature CMOS SPDT switch using body-floating technique to improve power performance. IEEE Trans. Microw. Theory Techn. 54(1), 31–39 (2006)

    Article  Google Scholar 

  21. H. Yu, Y. Chen, C.C. Boon, C. Li, P.I. Mak, R.P. Martins, A 0.044-mm2 0.5-to-7-GHz resistor-plus-source-follower-feedback noise-cancelling LNA achieving a flat NF of 3.3±0.45 dB. IEEE Trans. Circuits Syst. II, Exp. Briefs 66(1), 71–75 (2019)

  22. H. Yu, Y. Chen, C.C. Boon, P.I. Mak, R.P. Martins, A 0.096-mm2 1–20-GHz triple-path noise-canceling common-gate common-source LNA with dual complementary pMOS–nMOS configuration. IEEE Trans. Microw. Theory Techn. 68(1), 144–159 (2020)

  23. H. Zhou, Y. Zhang, Y. Yu, Ultra-wideband low noise amplifier employing noise cancelling and simultaneous input and noise matching technique. IEICE Electronics Express 16(11), 1–4 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology (MOST) of Taiwan, Republic of China, under Contract most109-2222-e-035-009. The authors are grateful for the support from TSRI for chip fabrication and measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yo-Sheng Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, JF., Lin, YS. Complementary Current-Reused 3.7–11.9 GHz LNA Using Body-Floating and Self-Bias Technique for Sub-6 GHz 5G Communications. Circuits Syst Signal Process 41, 5968–5989 (2022). https://doi.org/10.1007/s00034-022-02077-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02077-5

Keywords

Navigation