Skip to main content
Log in

Compact Floating Dual Memelement Emulator Employing VDIBA and OTA: A Novel Realization

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The aim of this work is to report a very compact floating memelement emulator that can realize two memelements (memristor and meminductor). Both realized memelements can be used in incremental as well as the decremental mode of operation. The presented emulator is based on a single dual-output operational transconductance amplifier and a voltage differencing inverted buffered amplifier along with two grounded passive elements and two external MOS transistors only. The desired memelement function can be achieved by just selecting a grounded impedance Z1 as C1 and R1. Overall CMOS implementation of the proposed circuit requires just twenty CMOS transistors. The emulator has a fully symmetric floating structure (incoming and outgoing currents are exactly equal and opposite in magnitude) and provides complete electronic control over the realized memelements behavior (over both time-dependent and time-independent parts). The developed circuit can be validated through presented simulation results generated in PSPICE using the 0.18 µm CMOS technology. The results verify that behavior of both the realized memelements can be obtained satisfactorily up to MHz range of frequency. The applicability of the realized meminductor behavior is shown in the electrical equivalent network designed for mimicking an Amoeba response for the temperature change, while the emulated memristor function has been validated by employing it in the exhibition of associative learning behavior using the depicted circuit. The given simulator circuit is also implemented using commercial ICs and simulation results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Code availability

Not applicable.

References

  1. Y. Babacan, An operational transconductance amplifier-based memcapacitor and meminductor. Istanbul Univ. J. Electr. Electron. Eng. 18, 36 (2018)

    Google Scholar 

  2. H. Bao, A. Hu, W. Liu, B. Bao, Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction. IEEE Trans. Neural Networks Learn. Syst. 31, 502 (2020)

    Article  Google Scholar 

  3. K. Bhardwaj, M. Srivastava, Floating memristor and inverse memristor emulation configurations with electronic/resistance controllability. IET Circuits Devices Syst. 14, 1065 (2020)

    Article  Google Scholar 

  4. K. Bhardwaj, M. Srivastava, Wide-band compact floating memristor emulator configuration with electronic/resistive adjustability. Microelectron. J. 117, 105284 (2021)

    Article  Google Scholar 

  5. K. Bhardwaj, M. Srivastava, New electronically adjustable memelement emulator for realizing the behavior of fully floating meminductor and memristor. Microelectron. J. 114, 105126 (2021)

    Article  Google Scholar 

  6. D. Biolek, R. Senani, V. Biolkova, Z. Kolka, Active elements for analog signal processing: classification, review and new proposals. Radioengineering 17, 15–32 (2008)

    Google Scholar 

  7. K. Bhardwaj, M. Srivastava, New grounded passive elements-based external multiplier-less memelement emulator to realize the floating meminductor and memristor. Analog Integr. Circuits Signal Process. 110, 409 (2022)

    Article  Google Scholar 

  8. K. Bhardwaj, M. Srivastava, New multiplier-less compact tunable charge-controlled memelement emulator using grounded passive elements, circuits. Syst. Signal Process. 41, 2429 (2022)

    Article  Google Scholar 

  9. Y. Babacan, F. Kacar, FCS based memristor emulator with associative learning circuit application. Istanbul Univ. J. Elect. Electron. Eng. 17, 3433–3437 (2017)

    Google Scholar 

  10. L. Chua, Memristor-the missing circuit elementI. IEEE Trans. Circuit Theory 18, 507 (1971)

    Article  Google Scholar 

  11. Z.G. Çam Taşkıran, M. Sağbaş, U.E. Ayten, H. Sedef, A new universal mutator circuit for memcapacitor and meminductor elements. AEU Int. J. Electron. Commun. 119, 153180 (2020)

    Article  Google Scholar 

  12. M. Chen, M. Sun, H. Bao, Y. Hu, B. Bao, Flux-charge analysis of two-memristor-based Chua’s circuit: dimensionality decreasing model for detecting extreme multistability. IEEE Trans. Ind. Electron. 67, 2197 (2020)

    Article  Google Scholar 

  13. M. Di Ventra, Y.V. Pershin, L.O. Chua, Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97, 1717 (2009)

    Article  Google Scholar 

  14. S. Gupta, S.K. Rai, New grounded and floating decremental/incremental memristor emulators based on CDTA and its application. Wirel. Pers. Commun. 113, 773 (2020)

    Article  Google Scholar 

  15. M. Gupta, R. Srivastava, U. Singh, Low-voltage low-power FGMOS based VDIBA and its application as universal flter. Microelectron. J. 46, 125 (2015)

    Article  Google Scholar 

  16. M. Itoh, L.O. Chua, Duality of memristor circuits. Int. J. Bifurc. Chaos 23, 1330001 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Kim, M.P. Sah, C. Yang, S. Cho, L.O. Chua, Memristor emulator for memristor circuit applications. IEEE Trans. Circuits Syst. I Regul. Pap. 59, 2422 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. K. Kumar, B.C. Nagar, New tunable resistorless grounded meminductor emulator. J. Comput. Electron. 20, 1452 (2021)

    Article  Google Scholar 

  19. M. Konal, F. Kacar, Electronically tunable meminductor based on OTA. AEU - Int. J. Electron. Commun. 126, 153391 (2020)

    Article  Google Scholar 

  20. Y. Liu, H.H.-C. Iu, Novel floating and grounded memory interface circuits for constructing mem-elements and their applications. IEEE Access 8, 114761 (2020)

    Article  Google Scholar 

  21. Y.V. Pershin, M. Di Ventra, Emulation of floating memcapacitors and meminductors using current conveyors. Electron. Lett. 47, 243 (2011)

    Article  Google Scholar 

  22. I. Pal, V. Kumar, N. Aishwarya, A. Nayak, A. Islam, A VDTA-based robust electronically tunable memristor emulator circuit. Analog Integr. Circuits Signal Process. 104, 47 (2020)

    Article  Google Scholar 

  23. P.B. Petrović, Tunable flux-controlled floating memristor emulator circuits. IET Circuits Devices Syst. 13, 479 (2019)

    Article  Google Scholar 

  24. P.B. Petrović, Simple flux-controlled grounded memristor emulator circuits based on current follower. Analog Integr. Circuits Signal Process. 108, 215 (2021)

    Article  Google Scholar 

  25. S.S. Prasad, P. Kumar, R.K. Ranjan, Resistorless memristor emulator using CFTA and its experimental verification. IEEE Access 9, 64065 (2021)

    Article  Google Scholar 

  26. Y. Pershin, S. La Fontaine, M. Di Ventra, Memristive model of amoeba learning. Nat. Preced. 80, 021926-1 (2008)

    Google Scholar 

  27. F.J. Romero, M. Escudero, A. Medina-Garcia, D.P. Morales, N. Rodriguez, Meminductor emulator based on a modified Antoniou’s gyrator circuit. Electronics 9, 1407 (2020)

    Article  Google Scholar 

  28. N. Raj, R.K. Ranjan, F. Khateb, M. Kumngern, Mem-elements emulator design with experimental validation and its application. IEEE Access 9, 69860 (2021)

    Article  Google Scholar 

  29. R.K. Ranjan, S. Sagar, S. Roushan, B. Kumari, N. Rani, F. Khateb, High frequency floating memristor emulator and its experimental results. IET Circuits Devices Syst. 13, 292 (2019)

    Article  Google Scholar 

  30. A. Raj, S. Singh, P. Kumar, Dual mode, high frequency and power efficient grounded memristor based on OTA and DVCC. Analog Integr. Circuits Signal Process. 110, 81 (2022)

    Article  Google Scholar 

  31. M.P. Sah, R.K. Budhathoki, C. Yang, H. Kim, Mutator-based meminductor emulator for circuit applications. Circuits Syst. Signal Process. 33, 2363 (2014)

    Article  Google Scholar 

  32. M.P. Sah, R.K. Budhathoki, C. Yang, H. Kim, Charge controlled meminductor emulator. JSTS J. Semicond. Technol. Sci. 14, 750 (2014)

    Article  Google Scholar 

  33. H. Sozen, U. Cam, A novel floating/grounded meminductor emulator. J. Circuits Syst. Comput. 29, 2050247 (2020)

    Article  Google Scholar 

  34. A. Singh, S.K. Rai, Novel meminductor emulators using operational amplifiers and their applications in chaotic oscillators. J. Circuits Syst. Comput. 30 (2021)

  35. A. Singh, S.K. Rai, VDCC-based memcapacitor/meminductor emulator and its application in adaptive learning circuit. Iran. J. Sci. Technol. Trans. Electr. Eng. 45, 1151 (2021)

    Article  Google Scholar 

  36. O.G. Sokmen, S.A. Tekin, H. Ercan, M. Alci, A novel design of low-voltage VDIBA and filter application. Elektron. Ir Elektrotechnika 22, 1151 (2016)

    Google Scholar 

  37. P. Thongdit, S. Chunchay, K. Angkeaw, A meminductor emulator based on flux-controlled model using field programmable analog array, in 2020 17th International Conference on Electrical Engineering, Computer, Telecommunications and Information Technology (IEEE, 2020), pp. 51–54

  38. W. Tangsrirat, Synthetic grounded lossy inductance simulators using single VDIBA. IETE J. Res. 63, 134 (2017)

    Article  Google Scholar 

  39. J. Vista, A. Ranjan, High frequency meminductor emulator employing VDTA and its application. IEEE Trans. Comput. Des. Integr. Circuits Syst. 39, 2020 (2020)

    Article  Google Scholar 

  40. F.Z. Wang, L.O. Chua, X. Yang, N. Helian, R. Tetzlaff, T. Schmidt, C. Li, J.M.G. Carrasco, W. Chen, D. Chu, Adaptive neuromorphic architecture neural networks. Neural Netw. 45, 111 (2013)

    Article  Google Scholar 

  41. B. Xu, G. Wang, H.H.-C. Iu, S. Yu, F. Yuan, A memristor–meminductor-based chaotic system with abundant dynamical behaviors. Nonlinear Dyn. 96, 765 (2019)

    Article  MATH  Google Scholar 

  42. Z.Y. Yin, H. Tian, G.H. Chen, L.O. Chua, What are Memristor, Memcapacitor, and Meminductor? IEEE Trans Circuits Syst. II Express Briefs 62, 402 (2015)

    Article  Google Scholar 

  43. F. Yuan, Y. Deng, Y. Li, A multistable generalized meminductor with coexisting stable pinched hysteresis loops. Int. J. Bifurc. Chaos 30, 2050023 (2020)

    Article  MathSciNet  Google Scholar 

  44. D. Yu, X. Zhao, T. Sun, H.H.C. Iu, T. Fernando, A simple floating mutator for emulating memristor, memcapacitor, and meminductor. IEEE Trans. Circuits Syst. II Express Briefs 67, 1334 (2020)

    Article  Google Scholar 

  45. F. Yuan, Y. Deng, Y. Li, G. Wang, The amplitude, frequency and parameter space boosting in a memristor–meminductor-based circuit. Nonlinear Dyn. 96, 389 (2019)

    Article  MATH  Google Scholar 

  46. N. Yadav, S.K. Rai, R. Pandey, New grounded and floating memristor emulators using OTA and CDBA. Int. J. Circuit Theory Appl. 48, 1154 (2020)

    Article  Google Scholar 

  47. A. Yesil, Y. Babacan, F. Kacar, An electronically controllable, fully floating memristor based on active elements: DO-OTA and DVCC. AEU Int. J. Electron. Commun. 123, 153315 (2020)

    Article  Google Scholar 

  48. N. Yadav, S.K. Rai, R. Pandey, Novel memristor emulators using fully balanced VDBA and grounded capacitor. Iran. J. Sci. Technol. Trans. Electr. Eng. 45, 229 (2021)

    Article  Google Scholar 

  49. Q. Zhao, C. Wang, X. Zhang, A universal emulator for memristor, memcapacitor, and meminductor and its chaotic circuit. Chaos Interdiscip. J. Nonlinear Sci. 29, 013141 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayank Srivastava.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, K., Srivastava, M. Compact Floating Dual Memelement Emulator Employing VDIBA and OTA: A Novel Realization. Circuits Syst Signal Process 41, 5933–5967 (2022). https://doi.org/10.1007/s00034-022-02067-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02067-7

Keywords

Navigation