Skip to main content
Log in

ECG Signal Protection for Telemedicine Applications

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Medical data is transferred between hospitals and healthcare providers via telemedicine to improve patient care. This transfer exposes medical data to a number of security risks. While most existing security solutions, such as cryptographic techniques, protect data from unauthorized access, this protection is only effective when the data is encrypted. In this context, we present a frequency-domain watermarking method for hiding electronic patient records in their associated ECG signals in this paper. The signal is transformed into a 2D image in this method, and the frequency content of the image is extracted using the integer wavelet transform. Finally, the acquired coefficients are subjected to Schur decomposition, and the watermark bits are integrated by altering the least significant bit of the generated Eigen values. We used the ECG data from the MIT-BIH Arrhythmia Database to test the suggested method. Based on the outcomes of the studies, we can conclude that using the Integer wavelet transform allows for the generation of a watermarked signal that is nearly identical to the host signal. The watermark's resistance to various attacks commonly used in watermarking is also confirmed by the robustness results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data used to support the findings of this study could be found freely here: https://archive.physionet.org/physiobank/database/mitdb/

References

  1. S.B.B. Ahmadi, G. Zhang, M. Rabbani, L. Boukela, H. Jelodar, An intelligent and blind dual color image watermarking for authentication and copyright protection. Appl. Intell. (2020). https://doi.org/10.1007/s10489-020-01903-0

    Article  Google Scholar 

  2. S.B.B. Ahmadi, G. Zhang, H. Jelodar, A robust hybrid SVD-based image watermarking scheme for color images, in 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 2019, pp. 0682–0688, https://doi.org/10.1109/IEMCON.2019.8936229

  3. S.B.B. Ahmadi, G. Zhang, S. Wei, Robust and hybrid SVD-based image watermarking schemes. Multimed. Tools Appl. 79(1), 1075–1117 (2020). https://doi.org/10.1007/s11042-019-08197-6

    Article  Google Scholar 

  4. S.B.B. Ahmadi, G. Zhang, S. Wei, L. Boukela, An intelligent and blind image watermarking scheme based on hybrid SVD transforms using human visual system characteristics. Vis. Comput. (2020). https://doi.org/10.1007/s00371-020-01808-6

    Article  Google Scholar 

  5. A. Alarifi, S. Sankar, T. Altameem, K.C. Jithin, M. Amoon, W. El-Shafai, A novel hybrid cryptosystem for secure streaming of high efficiency H.265 compressed videos in IoT multimedia applications. IEEE Access 8, 128548–128573 (2020). https://doi.org/10.1109/ACCESS.2020.3008644

    Article  Google Scholar 

  6. R.A. Alotaibi, L.A. Elrefaei, Text-image watermarking based on integer wavelet transform (IWT) and discrete cosine transform (DCT). Appl. Comput. Inform. 15(2), 191–202 (2019). https://doi.org/10.1016/j.aci.2018.06.003

    Article  Google Scholar 

  7. K. Amine, K. Fares, K.M. Redouane, E. Salah, Medical image watermarking for telemedicine application security. J. Circuit Syst. Comp. 31, 2250097 (2021). https://doi.org/10.1142/S0218126622500979

    Article  Google Scholar 

  8. T.K. Araghi, A.A. Manaf, An enhanced hybrid image watermarking scheme for security of medical and non-medical images based on DWT and 2-D SVD. Future Gener. Comput. Syst. 101, 1223–1246 (2019). https://doi.org/10.1016/j.future.2019.07.064

    Article  Google Scholar 

  9. S. Euschi, K. Amine, R. Kafi, F. Kahlessenane, A Fourier transform based audio watermarking algorithm. Appl. Acoust. 172, 107652 (2021). https://doi.org/10.1016/j.apacoust.2020.107652

    Article  Google Scholar 

  10. K. Fares, A. Khaldi, K. Redouane, E. Salah, DCT & DWT based watermarking scheme for medical information security. Biomed. Signal Process. Control 66, 102403 (2021). https://doi.org/10.1016/j.bspc.2020.102403

    Article  Google Scholar 

  11. E. Farri, P. Ayubi, A blind and robust video watermarking based on IWT and new 3D generalized chaotic sine map. Nonlinear Dyn. 93(4), 1875–1897 (2018). https://doi.org/10.1007/s11071-018-4295-x

    Article  Google Scholar 

  12. K.C. Jithin, S. Sankar, Colour image encryption algorithm combining Arnold map, DNA sequence operation, and a Mandelbrot set. J. Inf. Secur. Appl. 50, 102428 (2020). https://doi.org/10.1016/j.jisa.2019.102428

    Article  Google Scholar 

  13. M. Jafari Barani, P. Ayubi, M. Yousefi Valandar, B. Yosefnezhad Irani, A blind video watermarking algorithm robust to lossy video compression attacks based on generalized Newton complex map and contourlet transform. Multimed. Tools Appl. 79(3), 2127–2159 (2020). https://doi.org/10.1007/s11042-019-08225-5

    Article  Google Scholar 

  14. F. Kahlessenane, A. Khaldi, M.R. Kafi, S. Euschi, A color value differentiation scheme for blind digital image watermarking. Multimed. Tools Appl. (2021). https://doi.org/10.1007/s11042-021-10713-6

    Article  Google Scholar 

  15. F. Kahlessenane, A. Khaldi, R. Kafi, S. Euschi, A DWT based watermarking approach for medical image protection. J. Ambient Intell. Hum. Comput. (2020). https://doi.org/10.1007/s12652-020-02450-9

    Article  Google Scholar 

  16. F. Kahlessenane, A. Khaldi, R. Kafi, S. Euschi, A robust blind medical image watermarking approach for telemedicine applications. Cluster Comput. (2021). https://doi.org/10.1007/s10586-020-03215-x

    Article  Google Scholar 

  17. F. Kahlessenane, A. Khaldi, M.R. Kafi, N. Zermi, S. Euschi, A value parity combination based scheme for retinal images watermarking. Opt. Quant. Electron. 53(3), 161 (2021). https://doi.org/10.1007/s11082-021-02793-3

    Article  Google Scholar 

  18. A. Khaldi, M.R. Kafi, M.S. Moad, Wrapping based curvelet transform approach for ECG watermarking in telemedicine application. Biomed. Signal Process. Control 75, 103540 (2022). https://doi.org/10.1016/j.bspc.2022.103540

    Article  Google Scholar 

  19. S. Kuanar, V. Athitsos, N. Pradhan, A. Mishra, K. R. Rao, Cognitive analysis of working memory load from EEG, by a deep recurrent neural network, in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, p. 2576–2580. https://doi.org/10.1109/ICASSP.2018.8462243

  20. X. Li, H. Shen, L. Zhang, H. Zhang, Q. Yuan, G. Yang, Recovering quantitative remote sensing products contaminated by thick clouds and shadows using multitemporal dictionary learning. IEEE Trans. Geosci. Remote Sens. 52(11), 7086–7098 (2014). https://doi.org/10.1109/TGRS.2014.2307354

    Article  Google Scholar 

  21. Y. Luo et al., A multi-scale image watermarking based on integer wavelet transform and singular value decomposition. Expert Syst. Appl. 168, 114272 (2021). https://doi.org/10.1016/j.eswa.2020.114272

    Article  Google Scholar 

  22. R.G. Mark, P.S. Schluter, G.B. Moody, P.H. Devlin, D. Chernoff, An annotated ECG database for evaluating arrhythmia detectors. IEEE Trans. Biomed. Eng. 29(8), 600 (1982)

    Google Scholar 

  23. L. Meng, L. Liu, G. Tian, X. Wang, An adaptive reversible watermarking in IWT domain. Multimed. Tools Appl. 80(1), 711–735 (2021). https://doi.org/10.1007/s11042-020-09686-9

    Article  Google Scholar 

  24. M.S. Moad, M.R. Kafi, A. Khaldi, A wavelet based medical image watermarking scheme for secure transmission in telemedicine applications. Microprocessors Microsyst. 90, 104490 (2022). https://doi.org/10.1016/j.micpro.2022.104490

    Article  Google Scholar 

  25. M.S. Moad, M.R. Kafi, A. Khaldi, A non-subsampled Shearlet transform based approach for heartbeat sound watermarking. Biomed. Signal Process. Control 71, 103114 (2022). https://doi.org/10.1016/j.bspc.2021.103114

    Article  Google Scholar 

  26. Z. Narima, A. Khaldi, K. Redouane, K. Fares, E. Salah, A DWT-SVD based robust digital watermarking for medical image security. Forensic Sci. Int. 320, 110691 (2021). https://doi.org/10.1016/j.forsciint.2021.110691

    Article  Google Scholar 

  27. M. Nazari, M. Mehrabian, A novel chaotic IWT-LSB blind watermarking approach with flexible capacity for secure transmission of authenticated medical images. Multimed. Tools Appl. 80(7), 10615–10655 (2021). https://doi.org/10.1007/s11042-020-10032-2

    Article  Google Scholar 

  28. A.K. Sahu, G. Swain, An optimal information hiding approach based on pixel value differencing and modulus function. Wirel. Pers. Commun. 108(1), 159–174 (2019). https://doi.org/10.1007/s11277-019-06393-z

    Article  Google Scholar 

  29. A.K. Sahu, G. Swain, High fidelity based reversible data hiding using modified LSB matching and pixel difference. J. King Saud Univ. Comput. Inf. Sci. (2019). https://doi.org/10.1016/j.jksuci.2019.07.004

    Article  Google Scholar 

  30. M. Sahu, N. Padhy, S.S. Gantayat, A.K. Sahu, Shadow image based reversible data hiding using addition and subtraction logic on the LSB planes. Sens. Imaging 22(1), 7 (2021). https://doi.org/10.1007/s11220-020-00328-w

    Article  Google Scholar 

  31. A.K. Sahu, G. Swain, E.S. Babu, Digital image steganography using bit flipping. Cybern. Inf. Technol. 18(1), 69–80 (2018). https://doi.org/10.2478/cait-2018-0006

    Article  MathSciNet  Google Scholar 

  32. M.J. Saikia, S. Kuanar, D. Borthakur, M. Vinti, T. Tendhar, A machine learning approach to classify working memory load from optical neuroimaging data, in Optical Techniques in Neurosurgery, Neurophotonics, and Optogenetics, 2021, vol. 11629, p. 157–164. https://doi.org/10.1117/12.2578952.

  33. E. Salah, K. Amine, K.M. Redouane, K. Fares, Spatial and frequency approaches for audio file protection. J. Circuit Syst. Comput. 30, 2150210 (2021). https://doi.org/10.1142/S0218126621502108

    Article  Google Scholar 

  34. P.S. Sneha, S. Sankar, A.S. Kumar, A chaotic colour image encryption scheme combining Walsh-Hadamard transform and Arnold-Tent maps. J. Ambient Intell. Hum. Comput. 11(3), 1289–1308 (2020). https://doi.org/10.1007/s12652-019-01385-0

    Article  Google Scholar 

  35. N. Tsafack, S. Sankar, B. Abd-El-Atty, J. Kengne, K.C. Jithin, A. Belazi, I. Mehmood, A.K. Bashir, O.-Y. Song, A.A.A. El-Latif, A new chaotic map with dynamic analysis and encryption application in internet of health things. IEEE Access 8, 137731–137744 (2020). https://doi.org/10.1109/ACCESS.2020.3010794

    Article  Google Scholar 

  36. M.Y. Valandar, M.J. Barani, P. Ayubi, A fast color image encryption technique based on three dimensional chaotic map. Optik 193, 162921 (2019). https://doi.org/10.1016/j.ijleo.2019.06.021

    Article  Google Scholar 

  37. M. Yousefi Valandar, M. Jafari Barani, P. Ayubi, A blind and robust color images watermarking method based on block transform and secured by modified 3-dimensional Hénon map. Soft Comput. 24(2), 771–794 (2020). https://doi.org/10.1007/s00500-019-04524-z

    Article  Google Scholar 

  38. N. Zermi, A. Khaldi, M.R. Kafi, F. Kahlessenane, S. Euschi, A lossless DWT-SVD domain watermarking for medical information security. Multimed. Tools Appl. 80(16), 24823–24841 (2021). https://doi.org/10.1007/s11042-021-10712-7

    Article  Google Scholar 

  39. N. Zermi, A. Khaldi, M.R. Kafi, F. Kahlessenane, S. Euschi, An SVD values ordering scheme for medical image watermarking. Cybern. Syst. 53(1), 282–297 (2021). https://doi.org/10.1080/01969722.2021.1983700

    Article  Google Scholar 

  40. N. Zermi, A. Khaldi, M.R. Kafi, F. Kahlessenane, S. Euschi, Robust SVD-based schemes for medical image watermarking. Microprocess. Microsyst. 84, 104134 (2021). https://doi.org/10.1016/j.micpro.2021.104134

    Article  Google Scholar 

  41. H. Zhang, L. Hu, A data hiding scheme based on multidirectional line encoding and integer wavelet transform. Signal Process. Image Commun. 78, 331–344 (2019). https://doi.org/10.1016/j.image.2019.07.019

    Article  Google Scholar 

  42. L. Zhang, D. Wei, Image watermarking based on matrix decomposition and gyrator transform in invariant integer wavelet domain. Signal Process. 169, 107421 (2020). https://doi.org/10.1016/j.sigpro.2019.107421

    Article  Google Scholar 

  43. L. Zhang, D. Wei, Robust and reliable image copyright protection scheme using downsampling and block transform in integer wavelet domain. Digit. Signal Process. 106, 102805 (2020). https://doi.org/10.1016/j.dsp.2020.102805

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by "La Direction Générale de la Recherche Scientifique et du Développement Technologique (DGRSDT)" of Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaldi Amine.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amine, K., Med Redouane, K. & Narima, Z. ECG Signal Protection for Telemedicine Applications. Circuits Syst Signal Process 41, 5856–5871 (2022). https://doi.org/10.1007/s00034-022-02063-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02063-x

Keywords

Navigation