Skip to main content
Log in

Convergence Analysis for an Undermodelled Variable Tap-Length MSF-Based Stereophonic Acoustic Echo Canceller

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Stereophonic acoustic echo cancellation (SAEC) applications of adaptive filters are complex compared to monophonic AEC due to the presence of an additional acoustic channel. In long room impulse response, SAEC is carried out with the help of more than one adaptive filter, each having hundreds to thousands of filter coefficients. A large number of filter weights result in degraded convergence and enhances filter design complexity. Multiple sub-filters (MSF) and variable tap-length (VT) algorithms are independently proposed for SAEC scenarios to address these issues. The MSF-based design improves the convergence; on the other hand, the VT algorithm optimizes the weight requirement for adaptive filters. Pseudo-optimum filter order is a common phenomenon in the VT algorithm, which results in undermodelling in SAEC applications. This paper analyses the convergence, mean-square convergence, and stability of an undermodelled final error VT-MSF-SAEC (FE-MSF-SAEC) and VT-MSF-SAEC. The mathematical analysis and the supported simulation with three variants of inputs represent the effect of pseudo-fractional undermodelling for a VT-MSF-SAEC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. G. Azarnia, Diffusion fractional tap-length algorithm with adaptive error width and step-size. Circuits Syst. Signal Process. 41(1), 321–345 (2022). https://doi.org/10.1007/s00034-021-01778-7

    Article  Google Scholar 

  2. A. Barik, G. Murmu, T.P. Bhardwaj, R. Nath, LMS adaptive multiple sub-filters based acoustic echo cancellation, in: 2010 International Conference on Computer and Communication Technology (ICCCT) (2010), pp. 824–827. https://doi.org/10.1109/ICCCT.2010.5640392

  3. J. Benesty, Y. Huang, Adaptive Signal Processing: Applications to Real-World Problems (Springer, Berlin, 2013)

    MATH  Google Scholar 

  4. J. Benesty, D.R. Morgan, M.M. Sondhi, A better understanding and an improved solution to the specific problems of stereophonic acoustic echo cancellation. IEEE Trans. Speech Audio Process. 6(2), 156–165 (1998). https://doi.org/10.1109/89.661474

    Article  Google Scholar 

  5. C. Breining, P. Dreiscitel, E. Hansler, A. Mader, B. Nitsch, H. Puder, T. Schertler, G. Schmidt, J. Tilp, Acoustic echo control. An application of very-high-order adaptive filters. IEEE Signal Process. Mag. 16(4), 42–69 (1999). https://doi.org/10.1109/79.774933

    Article  Google Scholar 

  6. S. Burra, A. Kar, Nonlinear stereophonic acoustic echo cancellation using sub-filter based adaptive algorithm. Digit. Signal Process. 121, 103323 (2021). https://doi.org/10.1016/j.dsp.2021.103323

  7. M. Djendi, A. Bounif, Performance analysis of under-modelling stereophonic acoustic echo cancellation by adaptive filtering LMS algorithm. Comput. Electr. Eng. 38(6), 1579–1594 (2012). https://doi.org/10.1016/j.compeleceng.2012.06.008

    Article  Google Scholar 

  8. A. Feuer, E. Weinstein, Convergence analysis of LMS filters with uncorrelated gaussian data. IEEE Trans. Acoust. Speech Signal Process. 33(1), 222–230 (1985). https://doi.org/10.1109/TASSP.1985.1164493

    Article  Google Scholar 

  9. Y. Gong, C.F. Cowan, An LMS style variable tap-length algorithm for structure adaptation. IEEE Trans. Signal Process. 53(7), 2400–2407 (2005). https://doi.org/10.1109/TSP.2005.849170

    Article  MathSciNet  MATH  Google Scholar 

  10. Y. Gu, K. Tang, H. Cui, W. Du, Convergence analysis of a deficient-length LMS filter and optimal-length sequence to model exponential decay impulse response. IEEE Signal Process. Lett. 10(1), 4–7 (2003). https://doi.org/10.1109/LSP.2002.806704

    Article  Google Scholar 

  11. S. Haykin, Adaptive Filter Theory by Simon Haykin (Pearson Education India, New Delhi, 2002)

    Google Scholar 

  12. A. Kar, M. Chandra, Pseudo-fractional tap-length learning based applied soft computing for structure adaptation of LMS in high noise environment, in: Soft Computing Techniques in Engineering Applications (Springer, Berlin, 2014), pp. 115–129. https://doi.org/10.1007/978-3-319-04693-8_8

  13. A. Kar, M. Chandra, An improved variable structure adaptive filter design and analysis for acoustic echo cancellation. Radioengineering 24(1), 252–261 (2015). https://doi.org/10.13164/re.2015.0252

  14. A. Kar, M. Chandra, Performance evaluation of a new variable tap-length learning algorithm for automatic structure adaptation in linear adaptive filters. AEU Int. J. Electron. Commun. 69(1), 253–261 (2015). https://doi.org/10.1016/j.aeue.2014.09.010

    Article  Google Scholar 

  15. A. Kar, M. Swamy, Convergence and steady state analysis of a tap-length optimization algorithm for linear adaptive filters. AEU Int. J. Electron. Commun. 70(9), 1114–1121 (2016). https://doi.org/10.1016/j.aeue.2016.05.010

    Article  Google Scholar 

  16. A. Kar, M. Swamy, Tap-length optimization of adaptive filters used in stereophonic acoustic echo cancellation. Signal Process. 131, 422–433 (2017). https://doi.org/10.1016/j.sigpro.2016.09.003

    Article  Google Scholar 

  17. A. Kar, T. Padhi, B. Majhi, M. Swamy, Analysing the impact of system dimension on the performance of a variable-tap-length adaptive algorithm. Appl. Acoust. 150, 207–215 (2019). https://doi.org/10.1016/j.apacoust.2019.02.015

    Article  Google Scholar 

  18. A. Kar, A. Anand, M. Swamy, Analysing the impact of system dimension on the performance of a variable-tap-length adaptive algorithm. Appl. Acoust. 158, 107043 (2020). https://doi.org/10.1016/j.apacoust.2019.107043

    Article  Google Scholar 

  19. R. Nath, Adaptive echo cancellation based on a multipath model of acoustic channel. Circuits Syst. Signal Process. 32(4), 1673–1698 (2013). https://doi.org/10.1007/s00034-012-9529-4

    Article  Google Scholar 

  20. C. Schüldt, F. Lindstrom, H. Li, I. Claesson, Adaptive filter length selection for acoustic echo cancellation. Signal Process. 89(6), 1185–1194 (2009). https://doi.org/10.1016/j.sigpro.2008.12.023

    Article  MATH  Google Scholar 

  21. R.N. Sharma, A. Chaturvedi, G. Sharma, Tracking behaviour of acoustic echo canceller using multiple sub-filters, in: 2006 14th European Signal Processing Conference (IEEE, 2006), pp. 1–5

  22. M.M. Sondhi, D.R. Morgan, J.L. Hall, Stereophonic acoustic echo cancellation–an overview of the fundamental problem. IEEE Signal Process. Lett. 2(8), 148–151 (1995). https://doi.org/10.1109/97.404129

    Article  Google Scholar 

  23. R. Vanamadi, A. Kar, Feedback cancellation in digital hearing aids using convex combination of proportionate adaptive algorithms. Appl. Acoust. 182, 108175 (2021). https://doi.org/10.1016/j.apacoust.2021.108175

    Article  Google Scholar 

  24. R. Vanamadi, A. Kar, A. Anand, B. Majhi, M. Swamy, Analyzing the effects of pseudo-optimum tap-length for an MSF-based acoustic echo canceller. Appl. Acoust. 150, 198–206 (2019). https://doi.org/10.1016/j.apacoust.2019.02.014

    Article  Google Scholar 

  25. R. Vanamadi, A. Kar, S. Burra, A. Anand, B. Majhi, Convergence performance evaluation of MSF-based LMS adaptive algorithm, in: 2019 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (2019), pp. 597–600. https://doi.org/10.1109/ECTI-CON47248.2019.8955136

  26. Y. Wei, Z. Yan, Variable tap-length LMS algorithm with adaptive step size. Circuits Syst. Signal Process. 36(7), 2815–2827 (2017). https://doi.org/10.1007/s00034-016-0438-9

    Article  Google Scholar 

  27. B. Widrow, S.D. Stearns, Adaptive Signal Processing (Pearson Education, New Delhi, 2016)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asutosh Kar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanamadi, R., Kar, A. Convergence Analysis for an Undermodelled Variable Tap-Length MSF-Based Stereophonic Acoustic Echo Canceller. Circuits Syst Signal Process 41, 5226–5253 (2022). https://doi.org/10.1007/s00034-022-02033-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02033-3

Keywords

Navigation