Skip to main content
Log in

Further Qualitative Results for Second-Order Dynamical Systems Based on Circuit Theory Approach

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this study, our goal is to construct mathematical models of some physical systems and then determine their qualitative behaviors by Lyapunov’s direct method. The constructed systems are governed by second-order vector ordinary differential equations. Our main system involves three nonlinear elements that generalize the previously studied systems. For each system, we construct the associated energy or storage or Lyapunov function from the physical implication of the system which is based on basic circuit theory. We use the power-energy relationship to construct the Lyapunov function for each system. The directional derivative of each function gives the negative value of the dissipative power in the system. These two technics may not be clear in the literature. Thus, the proposed approach simplifies the derivative of Lyapunov functions which are written in integration and improves some well-known results. For a physical system, we insist that the Lyapunov function and its directional derivate are unique. Our discussion includes four new results associated with the stability theory of dynamical systems. We also give a new passivity result for our main system. Finally, we give an example with simulations to elucidate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Abate, D. Ahmed, M. Giacobbe, A. Peruffo, Formal synthesis of Lyapunov neural networks. IEEE Control Syst. Lett. 5(3), 773–778 (2021). https://doi.org/10.1109/lcsys.2020.3005328

    Article  MathSciNet  Google Scholar 

  2. R.J. Abraham, V.G. Rau, Transient stability of power systems using lyapunov functions. in Natioal Power Systems Conferance, Madras 600036 (2004)

  3. A.S. Andreev, O.A. Peregudova, Y.V. Petrovicheva, On trajectory tracking control of prismatic and revolute joined robotic manipulators. Izvestiya VUZ. Appl. Nonlinear Dyn. 29(3), 398–408 (2021). https://doi.org/10.18500/0869-6632-2021-29-3-398-408

    Article  Google Scholar 

  4. A. Andreev, O. Peregudova, The direct lyapunov method in the motion stabilization problems of robot manipulators. In: 2020 15th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference)(STAB) (pp. 1–3), (2020). doi.org/https://doi.org/10.1109/stab49150.2020.9140548

  5. A.S. Andreev, O.A Peregudova, Y.V. Petrovicheva, On the problem of trajectory tracking for robotic manipulators with prismatic and revolute joints, In: 2020 4th Scientific School on Dynamics of Complex Networks and their Application in Intellectual Robotics (DCNAIR), pp. 24–27, (2020) doi.org/https://doi.org/10.1109/DCNAIR50402.2020.9216905

  6. M.I. Gil, Stability of linear systems governed by second order vector differential equations. Int. J. Control 78(7), 534–536 (2005). https://doi.org/10.1080/00207170500111630

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Grune, F. Wurth, Computing control Lyapunov functions via a Zubov type algorithm. In: Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187), (2000). doi.org/https://doi.org/10.1109/cdc.2000.914109

  8. R.B.L. Guedes, F.H.J.R. Silva, L.F.C. Alberto, N.G. Bretas, Large disturbance voltage stability assessment using extended Lyapunov function and considering voltage dependent active loads. IEEE Power Eng. Soc. General Meet. (2005). https://doi.org/10.1109/pes.2005.1489222

    Article  Google Scholar 

  9. S.F. Hafstein, An algorithm for constructing Lyapunov functions. Electronic Journal of Differential Equations, (2007).

  10. W. Hahn, Stability of Motion. Springer, Berlin (1967).

    Book  Google Scholar 

  11. S.B. Hsu, A survey of constructing Lyapunov functions for mathematical models in population biology. Taiwan. J. Mathe. 14, 151–173 (2005). https://doi.org/10.11650/twjm/1500407791

    Article  MathSciNet  MATH  Google Scholar 

  12. H.K. Khalil, Nonlinear Control (Pearson Education, London, 2015), pp. 49–123

    Google Scholar 

  13. T.C. Lee, Y. Tan, I. Mareels, Detectability and uniform global asymptotic stability in switched nonlinear time-varying systems. IEEE Trans. Autom. Control 65(5), 2123–2138 (2020). https://doi.org/10.1109/tac.2019.2919672

    Article  MathSciNet  MATH  Google Scholar 

  14. M.S. Mamiş, M.E. Meral, State-space modeling and analysis of fault arcs. Electric Power Syst. Res. 76(1–3), 46–51 (2005). https://doi.org/10.1016/j.epsr.2005.04.002

    Article  Google Scholar 

  15. M. Mansour, Generalized Lyapunov function for power systems. IEEE Trans. Autom. Control 19(3), 247–248 (1974). https://doi.org/10.1109/tac.1974.1100560

    Article  MATH  Google Scholar 

  16. Meiss, J. D.: Differential dynamical systems. Society for Industrial and Applied Mathematics. pp 118–124, (2007). doi.org/https://doi.org/10.1137/1.9780898718232

  17. L. Rodrigues, B. Samadi, M. Moarref, Piecewise affine control: continuous time, sampled data, and networked systems. Soc. Ind. Appl. Math. (2019). https://doi.org/10.1137/1.9781611975901

    Article  MATH  Google Scholar 

  18. D.G. Schultz, J.E. Gibson, The variable gradient method for generating liapunov functions. Trans. Am. Inst. Electr. Eng. Part II 81(4), 203–210 (1962). https://doi.org/10.1109/tai.1962.6371818

    Article  Google Scholar 

  19. Z. Shuai, C. Shen, X. Liu, Z. Li, Z.J. Shen, Transient angle stability of virtual synchronous generators using Lyapunov’s direct method. IEEE Trans. Smart Grid 10(4), 4648–4661 (2018). https://doi.org/10.1109/tsg.2018.2866122

    Article  Google Scholar 

  20. J. Sugie, Y. Amano, Global asymptotic stability of nonautonomous systems of Liénard type. J. Math. Anal. Appl. 289(2), 673–690 (2004). https://doi.org/10.1016/j.jmaa.2003.09.023

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Tongren, Approaches to the qualitative theory of ordinary differential equations. Peking Univ. Ser. Math. (2007). https://doi.org/10.1142/6348

    Article  MATH  Google Scholar 

  22. W.F. Trench, On the asymptotic behavior of solutions of second order linear differential equations. Proc. Am. Math. Soc. 14(1), 12–14 (1963). https://doi.org/10.1090/s0002-9939-1963-0142844-7

    Article  MathSciNet  MATH  Google Scholar 

  23. C. Tunç, M. Ateş, Stability and boundedness results for solutions of certain third order nonlinear vector differential equations. Nonlinear Dyn. 45(3–4), 273–281 (2006). https://doi.org/10.1007/s11071-006-1437-3

    Article  MathSciNet  MATH  Google Scholar 

  24. C. Tunç, H. Şevli, Stability and boundedness properties of certain second-order differential equations. J. Franklin Inst. 344(5), 399–405 (2007). https://doi.org/10.1016/j.jfranklin.2006.02.017

    Article  MathSciNet  MATH  Google Scholar 

  25. C. Tunç, E. Tunç, On the asymptotic behavior of solutions of certain second-order differential equations. J. Franklin Inst. 344(5), 391–398 (2007). https://doi.org/10.1016/j.jfranklin.2006.02.011

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Tunç, A note on boundedness of solutions to a class of non-autonomous differential equations of second order. Appl. Anal. Discrete Math. 4(2), 361–372 (2010). https://doi.org/10.2298/aadm100601026t

    Article  MathSciNet  MATH  Google Scholar 

  27. Vidyasagar, M.: Nonlinear systems analysis. Society for Industrial and Applied Mathematics, pp. 135–192, (2002). doi.org/https://doi.org/10.1137/1.9780898719185

  28. E. Wall, M. Moe, An energy metric algorithm for the generation of Lyapunov functions. IEEE Trans. Autom. Control 13(1), 121–122 (1968). https://doi.org/10.1109/tac.1968.1098824

    Article  Google Scholar 

  29. J.-L. Wang, H.-N. Wu, T. Huang, S.-Y. Ren, J. Wu, Passivity of directed and undirected complex dynamical networks with adaptive coupling weights. IEEE Trans. Neural Netw. Learn. Syst. 28(8), 1827–1839 (2017). https://doi.org/10.1109/tnnls.2016.2558502

    Article  MathSciNet  Google Scholar 

  30. Wang, J.-L., Wu, H.-N., Huang, T., Ren, S.-Y.: Passivity and output synchronization of CDNs with fixed and adaptive coupling strength. Analy. Control Output Synchron. Complex Dyn. Netw. 14: 27–52, (2018)

  31. J.C. Willems, Dissipative dynamical systems part I general theory. Archive. Rational. Mech. Anal. 45(5), 321–351 (1972). https://doi.org/10.1007/bf00276493

    Article  MathSciNet  MATH  Google Scholar 

  32. X. Wu, K. Xiong, Correspondence Remarks on stability results for the solutions of certain fourth-order autonomous differential equations. Int. J. Control 69(2), 353–360 (1998). https://doi.org/10.1080/002071798222893

    Article  MATH  Google Scholar 

  33. C. Yang, J. Sun, Q. Zhang, X. Ma, Lyapunov stability and strong passivity analysis for nonlinear descriptor systems. IEEE Trans. Circuits Syst. I Regul. Pap. 60(4), 1003–1012 (2012). https://doi.org/10.1109/tcsi.2012.2215396

    Article  MathSciNet  MATH  Google Scholar 

  34. L. Zhang, L. Yu, Global asymptotic stability of certain third-order nonlinear differential equations. Math. Methods Appl. Sci. 36(14), 1845–1850 (2013). https://doi.org/10.1002/mma.2729

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammet Ateş.

Ethics declarations

Conflict of interest

On behalf of the author, the author states that there is no conflict of interest.

Data Availability

All data included in this study are available upon request by contact with the corresponding author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ateş, M., Minaz, M.R. Further Qualitative Results for Second-Order Dynamical Systems Based on Circuit Theory Approach. Circuits Syst Signal Process 41, 4755–4774 (2022). https://doi.org/10.1007/s00034-022-02027-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02027-1

Keywords

Navigation