Skip to main content
Log in

Image Tone Mapping by Employing Anisotropic Total Variation and Two-Directional Gradient Prior

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Tone mapping reproduces the true radiance map of a scene from a high dynamic range (HDR) image while preserving sharp edges. Popular approaches extract base and texture layers from an HDR image, adjust and combine them to obtain the final results. Due to the drawbacks of the priors used in layer decomposition, these methods suffer from over-enhancement and halo artifacts. In this paper, to suppress halo artifacts while preserving sharp edges, we propose a new layer decomposition model for tone mapping. We apply L1 regularized anisotropic total variation to model the piecewise part, and impose an L0 regularized two-directional gradient prior on the detail structures to achieve efficient structural layer decomposition. Experiments show that our method outperforms state-of-the-art methods on image decomposition and tone mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. F. Banterle, A. Artusi, K. Debattista, A. Chalmers, Advanced High Dynamic Range Imaging: Theory and Practice (2nd ed.). A K Peters/CRC Press, (2017)

  2. R. Boitard, M.T. Pourazad, P. Nasiopoulos, J. Slevinsky, Demystifying high-dynamic-range technology: a new evolution in digital media. IEEE Consum. Electron. Magaz. 4(4), 72–86 (2015)

    Article  Google Scholar 

  3. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends R Mach. Learn. 3(1), 1–122 (2011)

    MATH  Google Scholar 

  4. H. Chen, Y. Fan, Q. Wang, Z. Li, Morphological component image restoration by employing bregmanized sparse regularization and anisotropic total variation. Circ. Syst. Signal Process. 39, 2507–2532 (2020)

    Article  Google Scholar 

  5. H. Chen, C. Wang, Y. Song, Z. Li, Split Bregmanized anisotropic total variation model for image deblurring. J. Vis. Commun. Image Represent. 31, 282–293 (2015)

    Article  Google Scholar 

  6. H. Chen, Z. Xu, Q. Feng, Y. Fan, Z. Li, An L0 regularized cartoon-texture decomposition model for restoring images corrupted by blur and impulse noise. Signal Process. Image Commun. 82, 115762 (2020)

  7. J. Chen, A. Adams, N. Wadhwa, S.W. Hasinoff, Bilateral guided upsampling. ACM Trans. Graph. (TOG) 35(6), 1–8 (2016)

    Article  Google Scholar 

  8. K. Chiu, M. Herf, P. Shirley, S. Swamy, C. Wang, K. Zimmerman, Spatially nonuniform scaling functions for high contrast images. Proceed. Graph. Interface 93, 245–253 (1993)

    Google Scholar 

  9. F. Drago, K. Myszkowski, T. Annen, N. Chiba, Adaptive logarithmic mapping for displaying high contrast scenes. Comput. Graph. Forum 22(3), 419–426 (2003)

    Article  Google Scholar 

  10. F. Durand, J. Dorsey, Fast bilateral filtering for the display of high-dynamic-range images. ACM Trans. Graph. 21(3), 257–266 (2002)

    Article  Google Scholar 

  11. Z. Farbman, R. Fattal, D. Lischinski, R. Szeliski, Edge preserving decompositions for multi-scale tone and texture manipulation. ACM Trans. Graph. 27(3), 499–508 (2008)

    Article  Google Scholar 

  12. X. Fu, D. Zeng, Y. Huang, X. P. Zhang, X. Ding, A weighted variational model for simultaneous reflectance and illumination estimation. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2782–2790 (2016)

  13. M. Gharbi, J. Chen, J. T. Barron, S. W. Hasinoff, F. Durand, Deep bilateral learning for real-time image enhancement. ACM Trans. Graph. 36(4), Article 118 (2017)

  14. B. Gu, W. Li, M. Zhu, M. Wang, Local edge-preserving multi-scale decomposition for high dynamic range image tone mapping. IEEE Trans. Image Process. 22(1), 70–79 (2013)

    Article  MathSciNet  Google Scholar 

  15. X. Hou, J. Duan, G. Qiu, Deep feature consistent deep image transformations: Downscaling, decolorization and HDR tone mapping. In Proceedings of IEEE Conferences in Computer Vision and Pattern Recognition (2017)

  16. M. Kim, J. Kautz, Consistent tone reproduction. In: Proceedings of the Tenth IASTED International Conference on Computer Graphics and Imaging 152–159 (2008)

  17. R. Kimmel, M. Elad, D. Shaked, R. Keshet, I. Sobel, A variational framework for retinex. Int. J. Comput. Vision 52(1), 7–23 (2003)

    Article  Google Scholar 

  18. G.W. Larson, H. Rushmeier, C. Piatko, A visibility matching tone reproduction operator for high dynamic range scenes. IEEE Trans. Visual Comput. Graph. 3(4), 291–306 (1997)

    Article  Google Scholar 

  19. Y. Li, L. Sharan, E.H. Adelson, Compressing and companding high dynamic range images with subband architectures. ACM Trans. Graph. 24(3), 836–844 (2005)

    Article  Google Scholar 

  20. Z. Liang, J. Xu, D. Zhang, Z. Cao, L. Zhang, A hybrid L1-L0 layer decomposition model for tone mapping. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

  21. Z. Liang, W. Liu, R. Yao, Contrast enhancement by nonlinear diffusion filtering. IEEE Trans. Image Process. 25(2), 673–686 (2016)

    Article  MathSciNet  Google Scholar 

  22. J. Lisani, Adaptive local image enhancement based on logarithmic mappings. In: IEEE International Conference on Image Processing (ICIP) (2018)

  23. J. Lisani, An analysis and implementation of the shape preserving local histogram modification algorithm. Image Processing Online 8, 408–434 (2018)

    Article  MathSciNet  Google Scholar 

  24. M.K. Ng, W. Wang, A total variation model for retinex. SIAM J. Imag. Sci. 4(1), 345–365 (2011)

    Article  MathSciNet  Google Scholar 

  25. V.A. Patel, P. Shah, S. Raman, A generative adversarial network for tone mapping hdr images. In: National Conference on Computer Vision, Pattern Recognition, Image Processing, and Graphics 220–231 (2018)

  26. S. Pattanaik, H. Yee, Adaptive gain control for high dynamic range image display. In: Proceedings of the 18th Spring Conference on Computer Graphics, ACM 83–87 (2002)

  27. A. Rana, P. Singh, G. Valenzise, F. Dufaux, N. Komodakis, A. Smolic, Deep tone mapping operator for high dynamic range images. IEEE Trans. Image Process. 29, 1285–1298 (2020)

    Article  MathSciNet  Google Scholar 

  28. E. Reinhard, K. Devlin, Dynamic range reduction inspired by photoreceptor physiology. IEEE Trans. Vis. Comput. Graph. 11(1), 13–24 (2005)

    Article  Google Scholar 

  29. E. Reinhard, M. Stark, P. Shirley, J. Ferwerda, Photographic tone reproduction for digital images. ACM Trans. Graph. 21(3), 267–276 (2002)

    Article  Google Scholar 

  30. L. Rudin, S. Osher, E. Fatmi, Nonlinear total variation based noise removal. Physica D 60, 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  31. C. Schlick, An Adaptive Sampling Technique for Multidimensional Integration by Ray-Tracing. Photorealistic Rendering in Computer Graphics. Springer (1994)

  32. Q. Shan, J. Jia, M.S. Brown, Globally optimized linear windowed tone mapping. IEEE Trans. Visual Comput. Graphics 16(4), 663–675 (2010)

    Article  Google Scholar 

  33. J. Tumblin, J.K. Hodgins, B.K. Guenter, Two methods for display of high contrast images. ACM Trans. Graph. 18(1), 56–94 (1999)

    Article  Google Scholar 

  34. L. Xu, C. Lu, Y. Xu, J. Jia, Image smoothing via L0 Gradient minimization. ACM Trans. Graph. 30(6), Article 174. (2011)

  35. H. Yeganeh, Z. Wang, Objective quality assessment of tone-mapped images. IEEE Trans. Image Process. 22(2), 657–667 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Xu from Nanjing university of science and technology for providing advice about this work, and thank the support by Natural Science Foundation of Huaian (HABZ202116) and Natural Science Research Project of Higher Education Institutions of Jiangsu Province (grant number 18KJB416002). We also thank Dr. Farbman, Dr. Shan, and Dr. Liang et al. for sharing the corresponding software online.

Funding

Natural Science Foundation of Huaian (HABZ202116) Huasong Chen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huasong Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Chen, H., Hua, N. et al. Image Tone Mapping by Employing Anisotropic Total Variation and Two-Directional Gradient Prior. Circuits Syst Signal Process 41, 5026–5048 (2022). https://doi.org/10.1007/s00034-022-02017-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02017-3

Keywords

Navigation