Skip to main content
Log in

\(L_1\)-Norm-Based Optimal Design of Digital Differentiator Using Multiverse Optimization

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a new optimal second-order design of the infinite impulse response digital differentiator. This design manifests the \(L_1\)-error fitness function’s optimization using the multi-verse optimization algorithm. The optimizing variables are obtained from the direct wave-form-based transfer function. The acquired magnitude response approximates the ideal differentiator with the mean absolute magnitude error − 45.8842 dB. The designed optimal differentiator has also been compared with the existing designs to manifests its efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author on request.

References

  1. A. Aggarwal, T.K. Rawat, D.K. Upadhyay, Optimal design of \(L_1\)-norm based IIR digital differentiators and integrators using the bat algorithm. IET Signal Process. 11(1), 26–35 (2017). https://doi.org/10.1049/iet-spr.2016.0010

    Article  Google Scholar 

  2. M.A. Al-Alaoui, Novel FIR approximations of IIR differentiators with applications to image edge detection, in 18th IEEE International Conference on Electronics, Circuits, and Systems, Beirut (2011), pp. 554–558. https://doi.org/10.1109/ICECS.2011.6122335

  3. M.A. Al-Alaoui, Using fractional delay to control the magnitudes and phases of integrators and differentiators. IET Signal Process. 1(2), 107–119 (2007). https://doi.org/10.1049/iet-spr:20060246

    Article  MathSciNet  Google Scholar 

  4. M.A. Al-Alaoui, Class of digital integrators and differentiators. IET Signal Process. 5(2), 251–260 (2011). https://doi.org/10.1049/iet-spr.2010.0107

    Article  Google Scholar 

  5. M.A. Al-Alaoui, M. Baydoun, Novel wide band digital differentiators and integrators using different optimization techniques, in International Symposium on Signals, Circuits and Systems (ISSCS2013) (2013). pp. 1–4. https://doi.org/10.1109/ISSCS.2013.6651225

  6. H. Faris, M.A. Hassonah, A.M. Al-Zoubi, S.M. Mirjalili, I. Aljarah, A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture. Neural Comput. Appl. 30, 2355–2369 (2018). https://doi.org/10.1007/s00521-016-2818-2

    Article  Google Scholar 

  7. A. Fettweis, Wave digital filters: theory and practice. Proc. IEEE 74, 270–327 (1986). https://doi.org/10.1109/PROC.1986.13458

    Article  Google Scholar 

  8. O.P. Goswami, T.K. Rawat, D.K. Upadhyay, A novel approach for the design of optimum IIR differentiators using fractional interpolation. Circuits Syst. Signal Process. 39, 1688–1698 (2020). https://doi.org/10.1007/s00034-019-01211-0

    Article  Google Scholar 

  9. O.P. Goswami, T.K. Rawat, D.K. Upadhyay, Fractional interpolation and multirate technique based design of optimum IIR integrators and differentiators. Int. J. Electron. 66, 1–15 (2021). https://doi.org/10.1080/00207217.2020.1870730

    Article  Google Scholar 

  10. L.D. Grossmann, Y.C. Eldar, An \(L_1\)-method for the design of linear-phase FIR digital filters. IEEE Trans. Signal Process. 55(11), 5253–5266 (2007). https://doi.org/10.1109/TSP.2007.896088

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Gupta, B. Relan, R. Yadav, V. Aggarwal, Wideband digital integrators and differentiators designed using particle swarm optimisation. IET Signal Process. 8(6), 668–679 (2014). https://doi.org/10.1049/iet-spr.2013.0011

    Article  Google Scholar 

  12. M. Jain, M. Gupta, N. Jain, Linear phase second order recursive digital integrators and differentiators. Radio Eng. J. 21(2), 712–717 (2012)

    Google Scholar 

  13. M. Kumar, T.K. Rawat, Optimal design of FIR fractional order differentiator using cuckoo search algorithm. Expert Syst. Appl. 42(7), 3433–3449 (2015). https://doi.org/10.1016/j.eswa.2014.12.020

    Article  Google Scholar 

  14. V. Lesnikov, T. Naumovich, A. Chastikov, Number theoretical analysis of the structures of classical IIR digital filters, in 7th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro (2018). https://doi.org/10.1109/MECO.2018.8406099

  15. S. Mirjalili, S.M. Mirjalili, A. Hatamlou, Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput. Appl. 27, 495–513 (2016)

    Article  Google Scholar 

  16. T.K. Rawat, Digital Signal Processing (Oxford University Press, Oxford, 2014)

    Google Scholar 

  17. J.H.F. Ritzerfeld, Noise gain expressions for low noise second-order digital filter structures. IEEE Trans. Circuits Syst. II Express Briefs 52(4), 223–227 (2005). https://doi.org/10.1109/TCSII.2004.842415

    Article  Google Scholar 

  18. J.H.F. Ritzerfeld, The direct wave form digital filter structure: an easy alternative for the direct form, in Proceedings of the 15th ProRISC, Annual Workshop on Circuits, Systems and Signal Processing (ProRISC 2004), Netherlands (2004). pp. 133–137

  19. S.K. Saha, S.P. Ghosal, R. Kar, D. Mandal, Cat swarm optimization algorithm for optimal linear phase FIR filter design. ISA Trans. 56(6), 781–794 (2013)

    Article  Google Scholar 

  20. G.I. Sayed, A. Darwish, A.E. Hassanien, Quantum multiverse optimization algorithm for optimization problems. Neural Comput. Appl. 31, 2763–2780 (2019). https://doi.org/10.1007/s00521-017-3228-9

    Article  Google Scholar 

  21. M.I. Skolnik, Introduction to Radar Systems, 2nd edn. (McGraw & Hill, New York, 1980)

    Google Scholar 

  22. D.K. Upadhyay, Class of recursive wideband digital differentiators and integrators. Radioengineering 21(3), 904–910 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, O.P., Rawat, T.K. & Upadhyay, D.K. \(L_1\)-Norm-Based Optimal Design of Digital Differentiator Using Multiverse Optimization. Circuits Syst Signal Process 41, 4707–4715 (2022). https://doi.org/10.1007/s00034-022-02003-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02003-9

Keywords

Navigation