Skip to main content
Log in

A Machine Learning Driven PVT-Robust VCO with Enhanced Linearity Range

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This work presents a PVT robust machine learning-based Voltage-controlled Oscillator (VCO) with an enhanced linearity range. The machine learning algorithm with PVT robustness is implemented digitally. Different from conventional methods, the proposed scheme does not require the VCO to be in working mode every time one needs the prediction of frequency. The proposed scheme uses the frequency to digital converter (FDC) output data as an input learning vector and uses a prediction block to predict the future frequencies. An 11-stage voltage-controlled oscillator with a machine learning algorithm is implemented in SCL 180 nm CMOS technology. The measurement results show that the proposed architecture is robust against PVT variations with an enhanced linearity range. Without a machine learning algorithm, the VCO’s control voltage linearity range is 0.28 V to 0.40 V that increases to the range from 0.1 to 1.8 V after applying the proposed machine learning algorithm. The maximum gain variation of 3.71% is observed at FF with respect to the TT corner after applying the proposed machine learning algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data sharing does not apply to this article as no datasets were generated or analyzed during the current study.

References

  1. E. Afacan, N. Lourenço, R. Martins, G. Dündar, Review: Machine learning techniques in analog/RF integrated circuit design, synthesis, layout, and test. Integration 77, 113–130 (2021). https://doi.org/10.1016/j.vlsi.2020.11.006

    Article  Google Scholar 

  2. J. Borgmans, E. Sacco, P. Rombouts, G. Gielen, Methodology for readout and ring oscillator optimization toward energy-efficient VCO-based ADCs. IEEE Trans. Circuits Syst. I Regul. Pap. (2021). https://doi.org/10.1109/tcsi.2021.31299199

    Article  Google Scholar 

  3. Y. Cao, X. Chen, G. Wang, Dynamic behavioral modeling of nonlinear microwave devices using real-time recurrent neural network. IEEE Trans. Electron Devices 56(5), 1020–1026 (2009). https://doi.org/10.1109/ted.2009.2016029

    Article  Google Scholar 

  4. F. Cardes, E. Gutierrez, A. Quintero, C. Buffa, A. Wiesbauer, L. Hernandez, 0.04-mm2 1.03-dB-A dynamic range second-order VCO-based audio sigma-delta ADC in 0.130 um CMOS. IEEE J. Solid-State Circuits 53(6), 1731–1742 (2018). https://doi.org/10.1109/jssc.2018.2799938

    Article  Google Scholar 

  5. P.R. Castañeda-Aviña, E. Tlelo-Cuautle, L.G. de la Fraga, Single-objective optimization of a CMOS VCO considering PVT and Monte Carlo Simulations. Math. Comput. Appl. 25(4), 76 (2020). https://doi.org/10.3390/mca25040076

    Article  MathSciNet  Google Scholar 

  6. S. Choi, S. Yoo, Y. Lim, J. Choi, A PVT-robust and low-jitter ring-VCO-based injection-locked clock multiplier with a continuous frequency-tracking loop using a replica-delay cell and a dual-edge phase detector. IEEE J. Solid-State Circuits 51(8), 1878–1889 (2016). https://doi.org/10.1109/jssc.2016.2574804

    Article  Google Scholar 

  7. E.T. Cuautle, M.A. Valencia-Ponce, L.G. de la Fraga, Sizing CMOS amplifiers by PSO and mol to improve DC operating point conditions. Electronics 9(6), 1027 (2020). https://doi.org/10.3390/electronics9061027

    Article  Google Scholar 

  8. B. Drost, M. Talegaonkar, P.K. Hanumolu, Analog filter design using ring oscillator integrators. IEEE J. Solid-State Circuits 47(12), 3120–3129 (2012). https://doi.org/10.1109/jssc.2012.2225738

    Article  Google Scholar 

  9. J.F. Epperson, An Introduction to Numerical Methods and Analysis (Wiley, New York, 2021)

    Book  Google Scholar 

  10. X. Gui, R. Tang, Y. Zhang, D. Li, L. Geng, A voltage-controlled ring oscillator with VCO-gain variation compensation. IEEE Microw. Wirel. Compon. Lett. 30(3), 288–291 (2020). https://doi.org/10.1109/lmwc.2020.2967391

    Article  Google Scholar 

  11. R. Guo, K. Qian, J. Wei, T. Chen, Y. Liu, D. Kong, J. Wang, Y. Wu, S.G. Hu, Q. Yu, Y. Liu, Design of a neural network-based VCO with high linearity and wide tuning range. IEEE Access 7, 60120–60125 (2019). https://doi.org/10.1109/access.2019.2915335

    Article  Google Scholar 

  12. W. Guoying, K. Sun, S. Guo, T. Zhang, T. Xi, R. Wang, P. Gui, A Low-voltage and temperature compensated ring VCO design. 978-1-4799-5924-2/14/$31.00 ©2014 IEEE

  13. A.S. Hajimiri, S. Limotyrakis, T.H. Lee, Jitter and phase noise in ring oscillators. IEEE J. Solid-State Circuits 34(6), 790–804 (1999)

    Article  Google Scholar 

  14. S. Huang, S. Liu, J. Hu, R. Wang, Z. Zhu, A 12-GHz wideband fractional-N PLL with robust VCO in 65-nm CMOS. IEEE Microw. Wirel. Compon. Lett. 29(6), 397–399 (2019). https://doi.org/10.1109/lmwc.2019.2909656

    Article  Google Scholar 

  15. K. Järvinen, Linear prediction theory, a mathematical basis for adaptive systems. Signal Process. 21(3), 284–285 (1990). https://doi.org/10.1016/0165-1684(90)90096

    Article  Google Scholar 

  16. X. Jianjun, M.C.E. Yagoub, R. Ding, Q.J. Zhang, Neural-based dynamic modeling of nonlinear microwave circuits, in 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278) (2002). https://doi.org/10.1109/mwsym.2002.1011838

  17. C.W. Lim, H.Y. Noh, T.Y. Yun, Small VCO-gain variation adding a bias-shifted inversion-mode MOS varactor. IEEE Microwave Wirel. Compon. Lett. 27(4), 395–397 (2017). https://doi.org/10.1109/lmwc.2017.2678431

    Article  Google Scholar 

  18. M. Loukrakpam, M. Choudhury, Hardware-efficient VLSI design for cascade support vector machine with on-chip training and classification capability. Circuits Syst. Signal Process. 39(10), 5272–5297 (2020). https://doi.org/10.1007/s00034-020-01415-99

    Article  Google Scholar 

  19. H. Maghami, P. Payandehnia, H. Mirzaie, R. Zanbaghi, S. Dey, K. Mayaram, T.S. Fiez, T, A highly linear OTA-free VCO-based 1–1 MASH delta-sigma ADC. IEEE Trans. Circuits and Syst. I: Regul. Pap. 66(7), 2440–2453 (2019). https://doi.org/10.1109/tcsi.2019.2897785

    Article  MathSciNet  MATH  Google Scholar 

  20. R.S. Michalski, Y. Kodratoff, R. Bareiss, Machine Learning: An Artificial Intelligence Approach (M. Kaufmann, New York, 1990)

    Google Scholar 

  21. F. Mkadem, S. Boumaiza, Physically inspired neural network model for RF power amplifier behavioral modeling and digital predistortion. IEEE Trans. Microw. Theory Tech. 59(4), 913–923 (2011). https://doi.org/10.1109/tmtt.2010.2098041

    Article  Google Scholar 

  22. B. Mutnury, M. Swaminathan, J. Libous, Macro-modeling of non-linear I/O drivers using spline functions and finite time difference approximation, in Electrical Performance of Electrical Packaging (IEEE Cat. No. 03TH8710) (2003). https://doi.org/10.1109/epep.2003.1250048

  23. J.W. Nam, Y.K. Lee, Machine-learning based analog and mixed-signal circuit design and optimization, in 2021 International Conference on Information Networking (ICOIN). (2021). https://doi.org/10.1109/icoin50884.2021.9333856

  24. Q. Pan, Y. Guo, J. Jin, J. Zhou, A linearization technique for ring VCO exploiting bulk-modulation, in 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS) (2021). https://doi.org/10.1109/mwscas47672.2021.9531742

  25. Y.S. Park, W.Y. Choi, Supply noise insensitive ring VCO with on-chip adaptive bias-current and voltage-swing control, in 2011 IEEE International Symposium of Circuits and Systems (ISCAS) (2011). https://doi.org/10.1109/iscas.2011.5937543

  26. Y.S. Park, W.Y. Choi, On-chip compensation of ring VCO oscillation frequency changes due to supply noise and process variation. IEEE Trans. Circuits Syst. II Express Briefs 59(2), 73–77 (2012). https://doi.org/10.1109/tcsii.2011.2180092

    Article  Google Scholar 

  27. N.H. Patel, Review on machine learning for analog circuit design. Int. J. Eng. Res. V9(05), 710 (2020). https://doi.org/10.17577/ijertv9is050710

    Article  Google Scholar 

  28. A.D. Poularikas, The least mean-square algorithm, in Adaptive Filtering, pp. 203–237 (2017)

  29. P. Prabha, S.J. Kim, K. Reddy, S. Rao, N. Grieser, A. Rao, G. Winter, P.K. Hanumolu, A highly digital VCO-based ADC architecture for current sensing applications. IEEE J. Solid-State Circuits 50(8), 1785–1795 (2015). https://doi.org/10.1109/jssc.2015.2414428

    Article  Google Scholar 

  30. A. Rao, M. Mansour, G. Singh, C.H. Lim, R. Ahmed, D.R. Johnson, A 4–6.4 GHz LC PLL with adaptive bandwidth control for a forwarded clock link. IEEE J. Solid-State Circuits 43(9), 2099–2108 (2008). https://doi.org/10.1109/jssc.2008.2001870

    Article  Google Scholar 

  31. S. Rao, K. Reddy, B. Young, P.K. Hanumolu, A deterministic digital background calibration technique for VCO-based ADCs. IEEE J. Solid-State Circuits 49(4), 950–960 (2014). https://doi.org/10.1109/jssc.2013.2293753

    Article  Google Scholar 

  32. J.K. Sahani, A. Singh, A. Agarwal, Fast locking and low jitter hybrid ADPLL architecture with bang-bang PFD and PVT calibrated flash TDC. AEU-Int. J. Electron. C. 124, 153344 (2020). https://doi.org/10.1016/j.aeue.2020.153344

    Article  Google Scholar 

  33. Z. Sakka, N. Gargouri, M. Samet, A low-power ring oscillator with temperature compensation for IR-UWB applications. J. Circuits Syst. Comput. 27(12), 1850186 (2018)

    Article  Google Scholar 

  34. K. Settaluri, A. Haj-Ali, Q. Huang, K. Hakhamaneshi, B. Nikolic, Autockt: Deep reinforcement learning of analog circuit designs (2020). arXiv:2001.01808

  35. J. Shin, H. Shin, A 1.9–3.8 GHz delta sigma fractional-N PLL frequency synthesizer with fast auto-calibration of loop bandwidth and VCO frequency. IEEE J. Solid-State Circuits 47(3), 665–675 (2012). https://doi.org/10.1109/jssc.2011.2179733

    Article  Google Scholar 

  36. H. Sun, J. Muhlestein, S. Leuenberger, K. Sobue, K. Hamashita, U.K. Moon, A 50 MHz bandwidth 54.2 dB SNDR reference-free stochastic ADC using VCO-based quantizers, in 2016, IEEE Asian Solid-State Circuits Conference (A-SSCC) (2016). https://doi.org/10.1109/asscc.2016.7844201

  37. H. Sun, K. Sobue, K. Hamashita & U. Moon (2018). An Oversampling Stochastic ADC Using VCO-Based Quantizers. IEEE Transactions on Circuits and Systems I: Regular Papers, 65(12), 4037–4050. http://doi:https://doi.org/10.1109/tcsi.2018.2836466

  38. G. Taylor, I. Galton, A mostly-digital variable-rate continuous-time delta-sigma modulator ADC. IEEE J. Solid-State Circuits 45(12), 2634–2646 (2010). https://doi.org/10.1109/jssc.2010.2073193

    Article  Google Scholar 

  39. G. Taylor, I. Galton, A reconfigurable mostly-digital delta-sigma ADC with a worst-case FOM of 160 dB. IEEE J. Solid-State Circuits 48(4), 983–995 (2013). https://doi.org/10.1109/jssc.2013.2239113

    Article  Google Scholar 

  40. T.Y. Tsai, T.S. Wang, Y.J. Chiu, C.C. Wang, A PVT validation phase-lock loop with multi-band VCO applied in closed-loop FOGs, in 2019 International Conference on IC Design and Technology (ICICDT) (2019). https://doi.org/10.1109/icicdt.2019.8790948

  41. L. Wang, H. Tian, H. Zhang, Soft fault diagnosis of analog circuits based on semi-supervised support vector machine. Analog Integr. Circ. Sig. Process. 108(2), 305–315 (2021). https://doi.org/10.1007/s10470-021-01851-w

    Article  Google Scholar 

  42. B. Wittenmark, Adaptive filter theory. Automatica 29(2), 567–568 (1993). https://doi.org/10.1016/0005-1098(93)90162

    Article  Google Scholar 

  43. T. Wu, P.K. Hanumolu, K. Mayaram, U.K. Moon, Method for a constant loop bandwidth in LC-VCO PLL frequency synthesizers. IEEE J. Solid-State Circuits 44(2), 427–435 (2009). https://doi.org/10.1109/jssc.2008.2010792

    Article  Google Scholar 

  44. Z. Yang, W. Wang, Z. Chen, Q. Fan, X. Chen, LSTM-RNN based analog IC automated sizing model for operational amplifier and VCO, in 2020 IEEE 5th International Conference on Integrated Circuits and Microsystems (ICICM) (2020). https://doi.org/10.1109/icicm50929.2020.92922522

  45. H. Yu, M. Swaminathan, C. Ji, D. White, A nonlinear behavioral modeling approach for voltage-controlled oscillators using augmented neural networks, in 2018 IEEE/MTT-S International Microwave Symposium-IMS (2018). https://doi.org/10.1109/mwsym.2018.8439324

  46. Q.J. Zhang, K.C. Gupta, V.K. Devabhaktuni, Artificial neural networks for rf and microwave design-from theory to practice. IEEE Trans. Microw. Theory Tech. 51(4), 1339–1350 (2003). https://doi.org/10.1109/tmtt.2003.809179

    Article  Google Scholar 

Download references

Acknowledgements

The Ministry of Electronics and Information Technology (MeitY), GoI, through the SMDP-VLSI C2SD project, is gratefully acknowledged for providing research facilities and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandpal, N., Singh, A. & Agarwal, A. A Machine Learning Driven PVT-Robust VCO with Enhanced Linearity Range. Circuits Syst Signal Process 41, 4275–4292 (2022). https://doi.org/10.1007/s00034-022-02001-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02001-x

Keywords

Navigation