Skip to main content
Log in

New Approach to \(H_{\infty }\) State Estimation for Continuous-Time Nonhomogeneous Markov Jump Systems with Time-Varying Delay

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper investigates the \(H_{\infty }\) state estimation problem of continuous-time delayed nonhomogeneous Markov jump systems (NMJSs). To fully consider the nonhomogeneous transition rates (TRs) and state-related vectors, a parameter-dependent Lyapunov–Krasovskii functional (PDLKF) with triple integrals is constructed, in which the integrands in the PDLKF are all time-varying. In order to deal with the derivative of the time-varying integrands, a switched vertices approach is proposed to relax the bound assumptions in the existing works, which leads to more practical results. Based on these ingredients, a corresponding switched estimator approach is proposed to match an \(H_{\infty }\) estimator for NMJSs. The designed \(H_{\infty }\) estimator is related to the switched rule, which is more general than nonswitched estimators in the previous works. Some examples are illustrated to show the effectiveness of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

No data, models, or code were generated or used during the study.

References

  1. E. Boukas, Stochastic Switching Systems: Analysis and Design (Springer, Berlin, 2007)

    Google Scholar 

  2. O. Costa, G. Benites, Robust mode-independent filtering for discrete-time Markov jump linear systems with multiplicative noises. Int. J. Control 86, 779–793 (2013)

    Article  MathSciNet  Google Scholar 

  3. X. Chang, J. Park, J. Zhou, Robust static output feedback \(H_{\infty }\) control design for linear systems with polytopic uncertainties. Syst. Control Lett. 85, 23–32 (2015)

    Article  Google Scholar 

  4. C. de Souza, A. Trofino, K. Barbosa, Mode-independent \( H_{\infty }\) filters for Markovian jumplinear systems. IEEE Trans. Autom. Control 51, 1837–1841 (2006)

    Article  Google Scholar 

  5. S. Ding, X. Xie, Z. Wang, Periodic event-triggered synchronization for discrete-time complex dynamical networks. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3053652

    Article  Google Scholar 

  6. S. Ding, Z. Wang, N. Rong, Intermittent control for quasi-synchronization of delayed discrete-time neural networks. IEEE Trans. Cybern. 51, 862–873 (2021)

    Article  Google Scholar 

  7. Y. Ding, H. Liu, Stability analysis of continuous-time Markovian jump time-delay systems with time-varying transition rates. J. Frankl. Inst. 353, 2418–2430 (2016)

    Article  MathSciNet  Google Scholar 

  8. Y. Ding, H. Liu, K. Shi, \(H_{\infty }\) state-feedback controller design for continuous-time nonhomogeneous Markov jump systems. Opt. Control Appl. Methods 38, 133–144 (2017)

    Article  MathSciNet  Google Scholar 

  9. L. Fu, Y. Ma, Dissipative filtering for singular Markov jump systems with generally uncertain transition rates via new integral inequality approach. J. Frankl. Inst. 355, 7354–7383 (2018)

    Article  MathSciNet  Google Scholar 

  10. H. Gao, T. Chen, \(H_{\infty }\) estimation for uncertain systems with limited communication capacity. IEEE Trans. Autom. Control 52, 2070–2084 (2007)

    Article  MathSciNet  Google Scholar 

  11. X. Gao, F. Deng, X. Li, Q. Zhou, Event-triggered finite-time reliable control for nonhomogeneous Markovian jump systems. Int. J. Robust Nonlinear Control 30, 1831–1849 (2020)

    Article  MathSciNet  Google Scholar 

  12. C. Gong, G. Zhu, P. Shi, \(L_{2}-L_{\infty }\) filtering for stochastic time-varying delay systems based on the Bessel–Legendre stochastic inequality. Signal Process. 145, 26–36 (2018)

    Article  Google Scholar 

  13. Q. He, M. Xing, X. Gao, F. Deng, Robust finite-time \(H_{\infty }\) synchronization for uncertain discrete-time systems with nonhomogeneous Markovian jump: observer-based case. Int. J. Robust Nonlinear Control (2020). https://doi.org/10.1002/rnc.4974

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Hua, L. Zhang, F. Yao, J. Ni, W. Dai, Y. Cheng, Robust \(H_{\infty }\) filtering for continuous-time nonhomogeneous Markov jump nonlinear systems with randomly occurring uncertainties. Signal Process. 148, 250–259 (2018)

    Article  Google Scholar 

  15. Y. Huang, Q. Sun, N. Zhang, R. Wang, A multi-slack bus model for bi-directional energy flow analysis of integrated power-gas systems. CSEE J Power Energy Syst. (2021). https://doi.org/10.17775/CSEEJPES.2020.04190

    Article  Google Scholar 

  16. H. Huang, Y. Sun, C. Ma, S. Chen, Y. Zhou, W. Wang, S. Tang, H. Xu, Y. Qiao, An efficient \(k\)-persistent spread estimator for traffic measurement in high-speed networks. IEEE/ACM Trans. Netw. 28, 1463–1476 (2020)

    Article  Google Scholar 

  17. H. Huang, Y. Sun, C. Ma, S. Chen, Y. Du, H. Wang, Q. Xiao, Spread estimation with non-duplicate sampling in high-speed networks. IEEE/ACM Trans. Netw. 29, 2073–2086 (2021)

    Article  Google Scholar 

  18. Z. Jin, Z. Wang, J. Li, Input-to-state stability of the nonlinear fuzzy systems via small-gain theorem and decentralized sliding mode control. IEEE Trans Fuzzy Syst. (2021). https://doi.org/10.1109/TFUZZ.2021.3099036

    Article  Google Scholar 

  19. T. Li, D. Yang, X. Xie, H. Zhang, Event-triggered control of nonlinear discrete-time system with unknown dynamics based on HDP. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2020.3044595

    Article  Google Scholar 

  20. Y. Li, S. Tong, L. Liu, G. Feng, Adaptive output-feedback control design with prescribed performance for switched nonlinear systems. Automatica 80, 225–231 (2017)

    Article  MathSciNet  Google Scholar 

  21. Y. Li, S. Tong, Adaptive neural networks prescribed performance control design for switched interconnected uncertain nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 29, 3059–3068 (2018)

    MathSciNet  Google Scholar 

  22. H. Liang, X. Guo, Y. Pan, T. Huang, Event-triggered fuzzy bipartite tracking control for network systems based on distributed reduced-order observers. IEEE Trans. Fuzzy Syst. 29, 1601–1614 (2021)

    Article  Google Scholar 

  23. H. Liang, G. Liu, H. Zhang, T. Huang, Neural-network-based event-triggered adaptive control of nonaffine nonlinear multiagent systems with dynamic uncertainties. IEEE Trans. Neural Netw. Learn. Syst. 32(5), 2239–2250 (2021)

    Article  MathSciNet  Google Scholar 

  24. G. Liu, S. Xu, J. Park, G. Zhuang, Reliable exponential \(H_{\infty }\) filtering for singular Markovian jump systems with time-varying delays and sensor failures. Int. J. Robust Nonlinear Control 28, 4230–4245 (2018)

    Article  MathSciNet  Google Scholar 

  25. H. Liu, Y. Ding, J. Cheng, New results on \(H_{\infty }\) filtering for Markov jump systems with uncertain transition rates. ISA Trans. 69, 43–50 (2017)

    Article  Google Scholar 

  26. K. Narendra, S. Tripathi, Identification andoptimizationofaircraftdynamics. J. Aircr. 10, 19–199 (1973)

    Article  Google Scholar 

  27. P. Park, S. Lee, W. Lee, Auxiliary function based integral inequalities for quadratic functions and their applications to time delay systems. J. Frankl. Inst. 352, 1378–1396 (2015)

    Article  MathSciNet  Google Scholar 

  28. H. Shen, T. Wang, M. Chen, J. Lu, Nonfragile mixed \(H_{\infty }/l_{2}-l_{\infty }\) state estimation for repeated scalar nonlinear systems with Markov jumping parameters and redundant channels. Nonlinear Dyn. 91, 641–654 (2018)

    Article  Google Scholar 

  29. M. Shen, J. Park, S. Fei, Event-triggered nonfragile \(H_{\infty }\) filtering of Markov jump systems with imperfect transmissions. Signal Process. 149, 204–213 (2018)

    Article  Google Scholar 

  30. Q. Sun, B. Wang, X. Feng, S. Hu, Small-signal stability and robustness analysis for microgrids under time-constrained DoS attack and a mitigation adaptive secondary control method. Sci. China Inf. Sci. (2021). https://doi.org/10.1007/s11432-021-3290-3

    Article  Google Scholar 

  31. Q. Sun, R. Fan, Y. Li, B. Huang, D. Ma, A distributed double-consensus algorithm for residential we-energy. IEEE Trans. Ind. Inf. 15, 4830–4842 (2019)

    Google Scholar 

  32. Y. Shi, B. Yu, Output feedback stabilization of networked control systems with random delays modeled by Markov chains. IEEE Trans. Autom. Control 54, 1668–1674 (2009)

    Article  MathSciNet  Google Scholar 

  33. J. Sun, H. Zhang, S. Xu, Y. Liu, Full information control for switched neural networks subject to fault and disturbance. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3100143

    Article  Google Scholar 

  34. J. Sun, H. Zhang, Y. Wang, Z. Shi, Dissipativity-based fault-tolerant control for stochastic switched systems with time-varying delay and uncertainties. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3068631

    Article  Google Scholar 

  35. Y. Tian, Z. Wang, Dissipative filtering for singular Markovian jump systems with generally hybrid transition rates. Appl. Math. Comput. (2021). https://doi.org/10.1016/j.amc.2021.126492

    Article  MathSciNet  MATH  Google Scholar 

  36. Y. Tian, Z. Wang, Asynchronous extended dissipative filtering for T–S fuzzy Markov jump systems. IEEE Trans. Syst. Man Cybern. Syst. (2021). https://doi.org/10.1109/TSMC.2021.3079464

    Article  Google Scholar 

  37. Y. Tian, Z. Wang, Stability analysis and generalised memory controller design for delayed T-S fuzzy systems via flexible polynomial-based functions. IEEE Trans. Fuzzy Syst. (2021). https://doi.org/10.1109/TFUZZ.2020.3046338

    Article  Google Scholar 

  38. Y. Tian, Z. Wang, A switched fuzzy filter approach to \(H_{\infty }\) filtering for Takagi–Sugeno fuzzy Markov jump systems with time delay: the continuous-time case. Inf. Sci. 557, 236–249 (2021)

    Article  MathSciNet  Google Scholar 

  39. Y. Tian, Z. Wang, Finite-time extended dissipative filtering for singular T–S fuzzy systems with nonhomogeneous Markov jumps. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.3030503

    Article  Google Scholar 

  40. Y. Wang, J. Zhao, Periodic event-triggered sliding mode control for switched uncertain T–S fuzzy systems with a logistic adaptive event-triggering scheme. IEEE Trans. Fuzzy Syst. (2021). https://doi.org/10.1109/TFUZZ.2022.3141749

    Article  Google Scholar 

  41. Y. Wang, J. Zhao, Neural-network-based event-triggered sliding mode control for networked switched linear systems with the unknown nonlinear disturbance. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3119665

    Article  Google Scholar 

  42. G. Wang, Q. Zhang, C. Yang, Stabilization of singular Markovian jump systems with time-varying switchings. Inf. Sci. 297, 254–270 (2015)

    Article  MathSciNet  Google Scholar 

  43. J. Wang, S. Ma, C. Zhang, M. Fu, Finite-time \(H_{\infty }\) filtering for nonlinear singular systems with nonhomogeneous Markov jumps. IEEE Trans. Cybern. 49, 2133–2143 (2019)

    Article  Google Scholar 

  44. L. Wang, H. Lam, New stability criterion for continuous-time Takagi–Sugeno fuzzy systems with time-varying delay. IEEE Trans. Cybern. 49, 1551–1556 (2019)

    Article  Google Scholar 

  45. Y. Wang, G. Zhuang, X. Chen, Z. Wang, F. Chen, Dynamic event-based finite-time mixed \(H_{\infty }\) and passive asynchronous filtering for T–S fuzzy singular Markov jump systems with general transition rates. Nonlinear Anal. Hybrid Syst. (2020). https://doi.org/10.1016/j.nahs.2020.100874

    Article  MathSciNet  MATH  Google Scholar 

  46. H. Wang, Y. Ying, A. Xue, Event-triggered \(H_{\infty }\) filtering for discrete-time Markov jump systems with repeated scalar nonlinearities. Circuits Syst. Signal Process. 40, 669–690 (2021)

    Article  Google Scholar 

  47. J. Xia, W. Zheng, S. Xu, Extended dissipativity analysis of digital filters with time delay and Markovian jumping parameters. Signal Process. 152, 247–254 (2018)

    Article  Google Scholar 

  48. S. Xiao, Z. Wang, Y. Tian, Stability analysis of delayed recurrent neural networks via a quadratic matrix convex combination approach. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3107427

    Article  Google Scholar 

  49. S. Xing, F. Deng, Delay-dependent \(H_{\infty }\) filtering for discrete singular Markov jump systems with Wiener process and partly unknown transition probabilities. J. Frankl. Inst. 355, 6062–6086 (2018)

    Article  MathSciNet  Google Scholar 

  50. D. Yang, Y. Sun, Q. Wei, H. Zhang, T. Li, Topology prediction and structural controllability analysis of complex networks without connection information. IEEE Trans. Syst. Man Cybern. Syst. (2020). https://doi.org/10.1109/TSMC.2021.3131490

    Article  Google Scholar 

  51. Y. Yin, Z. Lin, Constrained control of uncertain nonhomogeneous Markovian jump systems. Int. J. Robust Nonlinear Control 27, 3937–3950 (2017)

    MathSciNet  MATH  Google Scholar 

  52. Y. Yin, P. Shi, F. Liu, K. Teo, C. Lim, Robust filtering for nonlinear nonhomogeneous Markov jump systems by fuzzy approximation approach. IEEE Trans. Cybern. 45, 1706–16 (2015)

    Article  Google Scholar 

  53. Y. Yin, L. Zhu, H. Zeng, Stochastic stability analysis of integral nonhomogeneous Markov jump systems. Int. J. Syst. Sci. 49, 479–485 (2018)

    Article  Google Scholar 

  54. W. Zhang, B. Natarajan, On the performance of Kalman filter for Markov jump linear systems with mode mismatch. Circuits Syst. Signal Process. 40, 1720–1742 (2021)

    Article  Google Scholar 

  55. X. Zhang, Q. Han, X. Ge, An overview of neuronal state estimation of neural networks with time-varying delays. Inf. Sci. 478, 83–99 (2019)

    Article  MathSciNet  Google Scholar 

  56. X. Zhang, Q. Han, A. Seuret, F. Gouaisbaut, An improved reciprocally convex inequality and an augmented Lyapunov–Krasovskii functional for stability of linear systems with time-varying delay. Automatica 84, 221–226 (2017)

    Article  MathSciNet  Google Scholar 

  57. Y. Zhang, Z. Jin, Q. Zhang, Impulse elimination of the Takagi–Sugeno fuzzy singular system via sliding mode control. IEEE Trans. Fuzzy Syst. (2021). https://doi.org/10.1109/TFUZZ.2021.3053325

    Article  Google Scholar 

  58. D. Zhang, B. Du, Y. Jing, X. Sun, Investigation on stability of positive singular Markovian jump systems with mode-dependent derivative-term coefficient. IEEE Trans. Syst. Man Cybern. Syst. (2020). https://doi.org/10.1109/TSMC.2020.3020271

    Article  Google Scholar 

  59. G. Zhuang, G. Song, S. Xu, \(H_{\infty }\) filtering for Markovian jump delay systems with parameter uncertainties and limited communication capacity. IET Control Theory Appl. 8, 1337–1353 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61973070, Liaoning Revitalization Talents Program under Grant XLYC1802010, in part by SAPI Fundamental Research Funds under Grant 2018ZCX22, and in part by the Fundamental Research Funds for the Central Universities under Grant N2104003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanshan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Wang, Z. & Wang, C. New Approach to \(H_{\infty }\) State Estimation for Continuous-Time Nonhomogeneous Markov Jump Systems with Time-Varying Delay. Circuits Syst Signal Process 41, 4390–4412 (2022). https://doi.org/10.1007/s00034-022-01995-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-01995-8

Keywords

Navigation