Skip to main content
Log in

Study of Bursting Oscillations in a Simple System with Signum Nonlinearity with Two Timescales: Theoretical Analysis and FPGA Implementation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, the effects of slowly varying external excitation and the sign of the strength of signum term of system with a simple signum nonlinearity function are investigated by using the fast-slow analysis method and the transformation phase portrait method. Firstly, a double-well and single-well non-smooth potential are presented. A comparison of the proposed system and the Duffing system with the same fixed points is presented. Secondly, by taking the periodic excitation as a slow-varying parameter, the non-smooth system can possess two timescales and it can be transformed into two linear autonomous systems. The phase space can be divided into two regions by the non-smooth boundaries, in which the trajectory is governed by two different subsystems, respectively. Based on the analysis of the two subsystems, the stabilities and the bifurcations of the equilibrium branches of the fast subsystem are presented when the sign of parameter \(b\) of signum term is positive and negative. The results show that the stability of the system and its bifurcations are most sensitive to the change of sign of parameter \(b\).Thirdly, through numerical simulations, the bursting oscillations with different waveforms are observed in the non-smooth system. It is found that for \(b > 0\), bursting oscillations presents two types of quiescent state (QS) and spiking state (SP), respectively, while if \(b < 0\), bursting patterns with four type of quiescent state and spiking state which are represented by \(QS_{ \pm i} (i = 1,2)\) and \(SP_{ \pm i} (i = 1,2)\), respectively. Based on the analysis of the bifurcations and portrait phase, the dynamical mechanism of the bursting oscillations is analyzed. Finally, the signum function is replaced by a sharply varying continuous hyperbolic tangent function. The results show that for a small value of constant parameter \(n\), the system exhibits bursting patterns. It is also found that the amplitude and the number of the spikes of bursting oscillation depend on the value of \(n\). The proposed system is implemented in field programmable gate array (FPGA) using hardware/software code-sign to verify the numerical simulation, because it can be applied in embedded engineering based on bursting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Data Availability

The authors declare that the manuscript has no associated data.

References

  1. K. Abirami, S. Rajasekar, M.A.F. Sanjuan, Vibrational Resonance in a System with a Signum Nonlinearity. Discontin. Nonlinearity Complex. 5(1), 43–58 (2016)

    Article  MATH  Google Scholar 

  2. N.T. Alombah, A.E.T. Tchendjeu, K. Romanic, F.C. Talla, H.B. Fotsin, FPGA implementation of a novel two-internal-state memristor and its two component chaotic circuit. Indian J. Sci. Technol. 14, 2257–2271 (2021)

    Article  Google Scholar 

  3. G. Birkhoff, G.-C. Rota, Ordinary Differential Equations, 3rd edn. (John Wiley and Sons, New York, 1978)

    MATH  Google Scholar 

  4. L. Burra, F. Zanolin, Chaos in a periodically Pertubed second; order equation with signum nonlinearity. Int. J. Bifurc. Chaos 30(2), 2050031 (2020)

    Article  MATH  Google Scholar 

  5. X. Chen, H. Chen, Complete bifurcation diagram and global phase portraits of Liénard differential equations of degree four. J. Math. Analy. Appl. 485(2), 123802 (2020)

    Article  MATH  Google Scholar 

  6. L.O. Chua, C.A. Desoer, E.S. Kuh, Linear and Nonlinear Circuits, 1st, Ed. (McGraw-Hill College, Singapore, 1987)

    MATH  Google Scholar 

  7. O. Decroly, A. Goldbeter, From simple to complex oscillatory behavior: analysis of bursting in a multiply regulated biochemical system. J. Theor. Biol. 124(2), 219–250 (1987)

    Article  Google Scholar 

  8. L. Fortuna, M. Frasca, M.G. Xibilia, Chua’s Circuit Implementations: Yesterday, Today and Tomorrow (World Scientific, Singapore, 2009)

    Book  Google Scholar 

  9. M. Fuhong, C. Jiayun, The coexisting Behaviors on the Boundary of a Duffing-like oscillator with Signum. Nonlinearity and Its FPGA-Based Implementation. Int. J. Bifurc. Chaos 30(6), 2050085 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. O. Guillén-Fernández, M.F. Moreno-López, E. Tlelo-Cuautle, Issues on applying one- and multi-step numerical methods to chaotic oscillators for FPGA implementation. Mathematics 9(2), 151 (2021)

    Article  Google Scholar 

  11. X. Han, Q. Bi, Slow passage through canard explosion and mixed-mode oscillations in the forced Van der Pol’s equation. Nonlinear. Dyn. 68, 1–2 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Hayashi, Y. Ueda, N. Akamatsu, H. Itakura, On the behavior of self-oscillatory systems with external force. Trans. IECE Japan. 53A, 150–158 (1970)

    Google Scholar 

  13. Y. Ji, Q. Bi, Bursting behavior in a non-smooth electric circuit. Phys. Lett. A 374(13), 1434–1439 (2010)

    Article  MATH  Google Scholar 

  14. A.M. Kamachkin, D.K. Potapov, V.V. Yevstafyeva, Existence of solutions for second-order differential equations with discontinuous Right-hand side. Electr. J. Differ. Equ. 2016(124), 1–9 (2016)

    MathSciNet  MATH  Google Scholar 

  15. B. Karakaya, A. Gülten, M. Frasca, A true random bit generator based on a memristive chaotic circuit: Analysis, design and FPGA implementation. Chaos, Soliton and Fractals 119, 143–149 (2019)

    Article  MATH  Google Scholar 

  16. A. Karunanidhi, S. Rajasekar, M.A.F. Sanjuán, Vibrational resonance in a harmonically trapped potential system. Commun. Nonlinear Sci. Numer. Simulat. 47, 370–378 (2017)

    Article  MATH  Google Scholar 

  17. S. Kehui, J.C. Sprott, Periodically forced chaotic system with signum nonlinearity. Int. J. Bifurcation Chaos 20, 1499–1507 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. S.T. Kingni, S. Jafari, S. Herve, P. Woafo, Three-dimensional chaotic autonomous system with only one stable equilibrium: Analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form. Eur. Phys. J. Plus 129(5), 76 (2014)

    Article  Google Scholar 

  19. S.T. Kingni, B. Nana, G.S. Mbouna Ngueuteu, P. Woafo, J. Danckaert, Bursting oscillations in a 3D system with asymmetrically distributed equilibria: Mechanism, electronic implementation and fractional derivation effect. Chaos. Solit. Fractal 71, 29–40 (2015)

    Article  MATH  Google Scholar 

  20. S.T. Kingni, K. Rajagopal, S. Çiçek, A. Cheukem, V.K. Tamba, G.F. Kuiate, Dynamical analysis, FPGA implementation and its application to chaos based random number generator of a fractal Josephson junction with unharmonic current-phase relation. Eur. Phys. J. B. 93(3), 44 (2020)

    Article  MathSciNet  Google Scholar 

  21. S.T. Kingni, K. Rajopal, V.K. Tamba, C. Ainamon, J.B.C. Orou, Analysis and FPGA implementation of an autonomous Josephson junction snap oscillator. Eur. Phys. J. B. 92, 227 (2019)

    Article  MathSciNet  Google Scholar 

  22. Y.S. Kondji, G.G. Fautso Kuiate, P. Woafo, KDP crystal in ac-driven RL circuits: dissipative and Hamiltonian chaos, and synchronization in an array of identical devices. Phys. Scr. 81(1), 015010 (2010)

    Article  MATH  Google Scholar 

  23. I. Kovacic, M. Cartmell, M. Zukovic, Mixed-mode dynamics of certain Bistable Oscillators: behaviour mapping, approximations for motion and links Van der Pol oscillators. Proceedings of the Royal Society A. Mathematical Physical and Engineering Sciences A 471(2184), 20150638 (2015)

  24. S. Leo Kingston, K. Thamilmaran, Bursting oscillations and mixed-mode oscillations in driven lienard system. Int. J. Bifuc. Chaos. 27(7), 1730025 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Li, X. Ma, X. Bian, S.-K. Lai, W. Zhang, Suppressing homoclinic chaos for a weak periodically excited non-smooth oscillator. Nonlinear Dyn. 99, 1450022 (2019)

    Google Scholar 

  26. L. Makouo, P. Woafo, Experimental observation of bursting patterns in Van der Pol oscillators. Chaos. Solit. Fractals 94, 95–101 (2017)

    Article  Google Scholar 

  27. F.C. Moon, P.J. Holmes, A magetoelastic strange attractor. J. Sound Vibrat. 65(2), 275–296 (1979)

    Article  MATH  Google Scholar 

  28. A.D. Pano-Azucena, E. Tlelo-Cuautle, B. Ovilla-Martinez, L.G. de la Fraga, Pipeline FPGA-based implementations of ANNs for the prediction of up to 600-steps-ahead of chaotic time series. J. Circ., Syst. Comput. 30(9), 2150164 (2021)

    Article  Google Scholar 

  29. D. Pol Van der , J. Mark Van der, The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. Phil. Mag. 6, 763–775 (1928)

    Article  Google Scholar 

  30. B. Santhosh, S. Narayanan, C. Padmanabhan, Discontinuity Induced Bifurcations in Nonlinear System. Procedia. IUTAM 19, 219–227 (2016)

    Article  Google Scholar 

  31. A. Sherman, J. Rinzel, J. Keizer, Emergence of organized bursting in clusters of pancreatic -cells by channel sharing. J. Biophys. 54, 411 (1988)

    Article  Google Scholar 

  32. A. Silva-Juárez, E. Tlelo-Cuautle, L.G. de la Fraga, R. Li, Optimization of the Kaplan-Yorke dimension in fractional-order chaotic oscillators by metaheuristics. App. Math. Computation 394, 125831 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  33. U. Simo Domguia, L.T. Abobda, P. Woafo, Dynamical behavior of a capacitive microelectromechanical system powered by a hindmarsh-rose electronic oscillator. J. Comput. Nonlinear Dynam. 11(5), 051006 (2016)

    Article  Google Scholar 

  34. H. Simo, P. Woafo, Bursting oscillations in electromechanical systems. Mech. Res. Commun. 38(8), 537–541 (2011)

    Article  MATH  Google Scholar 

  35. H. Simo, P. Woafo, Bifurcation structure of a Van der Pol Oscillator Subjected to nonsinusoidal Periodic excitation. International J. Bifurc. Chaos 22(1), 1250003 (2012)

    Article  Google Scholar 

  36. H. Simo, P. Woafo, Effects of asymmetric potentials on bursting oscillations in Duffing oscillator. Optik 127(20), 8760–8766 (2016)

    Article  Google Scholar 

  37. U. SimoDomguia, M.V. Tchakui, H. Simo, P. Woafo, Theoretical and experimental study of an electromechanical system actuated by a brusselator electronic circuit simulator. J. Vibrat. Acoustic 139(6), 061017 (2017)

    Article  Google Scholar 

  38. N.S. Soliman, M.F. Tolba, L.A. Said, A.H. Madian, A.G. Radwan, Fractional X-shape controllable multi-scroll attractor with parameter effect and FPGA automatic design tool software. Chaos Soliton and Fractals 126, 292–307 (2019)

    Article  MathSciNet  Google Scholar 

  39. T.A. Tchendjeu Ecladore, R. Tchitnga, B.H. Fotsin, Hardware implementation of amplitude shift key in gand quadrature amplitude modulators using FPGA. Sci. J. Circ., Syst. Signal Process. 10, 15–24 (2021)

    Google Scholar 

  40. E. Tlelo-Cuautle, J.D. Díaz-Muñoz, A.M. González-Zapata, R. Li, W.D. León-Salas, F.V. Fernández, O. Guillén-Fernández, I. Cruz-Vega, Chaotic image encryption using hopfield and hindmarsh-rose neurons implemented on FPGA. Sensors 20(5), 1326 (2020)

    Article  Google Scholar 

  41. E. Tlelo-Cuautle, L.G. De La Fraga, O. Guillén-Fernández, A. Silva-Juárez, Optimization of Integer/Fractional Order Chaotic Systems by Metaheuristics and their Electronic Realization (CRC press, Boca Raton, 2021)

    Book  MATH  Google Scholar 

  42. E. Tlelo-Cuautle, A.D. Pano-Azucena, J.J. Rangel-Magdaleno, V.H. Carbajal-Gomez, G. Rodriguez-Gomez, Generating a 50-scroll chaotic attractor at 66 MHz by using FPGAs. Nonlinear Dyn. 85(4), 2143–2157 (2016)

    Article  Google Scholar 

  43. L. Wang, M. Huang, W. Xu, L. Jin, The suppression of random parameter on the boundary crisis of the smooth and discontinuous oscillator system. Nonlinear Dyn. 92, 1147–1156 (2018)

    Article  Google Scholar 

  44. Z. Wang, C. Zhang, Q. Bi, Bursting oscillations with boundary homoclinic bifurcations in a filippov chua’s circuit. Pramana-J. Phys. 94, 159 (2020)

    Article  Google Scholar 

  45. Z. Wang, Z. Zhang, Q. Bi, Bursting oscillations with delayed C-bifurcations in a modified Chua’s circuit. Nonlinear Dyn. 100(3), 2899–2915 (2020)

    Article  Google Scholar 

  46. H. Xiujing, S.Q. Bi, Bursting oscillations in Duffing’s equation with slowly changing external forcing. Commun. Nonlinear Sci. Numer. Simulat. 16(10), 4146–4152 (2011)

    Article  MATH  Google Scholar 

  47. T. Yang, J. Liu, Q. Cao, Response analysis of the archetypal smooth and discontinuous oscillator for vibration energy harvesting. Physic A 507, 358–373 (2018)

    Article  MathSciNet  Google Scholar 

  48. Y. Yue, H. Xiujing, C. Zhang, Q. Bi, Mixed-mode oscillations in a nonlinear time delay oscillator with time varying parameters. Commun. Nonlinear Sci. Numer. Simulat. 47, 23–34 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. Y. Yue, M. Zhao, Z. Zhang, Novel bursting patterns in van der pol-duffing oscillator with slow varying external force. Mech. Syst. Signal Process. 93, 164–174 (2017)

    Article  Google Scholar 

  50. R. Zhang, M. Peng, Z. Zhang, Q. Bi, Bursting oscillations as well as the bifurcation mechanism in a non-smooth chaotic geomagnetic field model. Chin. Phys. B. 27, 110501 (2018)

    Article  Google Scholar 

  51. S. Zhang, X. Wang, Z. Zeng, A simple no-equilibrium chaotic system with only one signum function for generating multidirectional variable hidden attractor and its hardware implementation. Chaos 30, 053129 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the editor and anonymous reviewers for their valuable comments and suggestions that helped to improve the presentation of the paper. H. Simo thanks Dr. Sifeu Takougang Kingni (Department of Mechanical, Petroleum and Gas Engineering, Faculty of Mines and Petroleum Industries, University of Maroua, Cameroun) for interesting discussions. Tchahou thanks Rodrigo Alejandro Melo for interesting discussions we had.

Funding

The authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herve Simo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simo, H., Tchendjeu, A.E.T. & Kenmogne, F. Study of Bursting Oscillations in a Simple System with Signum Nonlinearity with Two Timescales: Theoretical Analysis and FPGA Implementation. Circuits Syst Signal Process 41, 4185–4209 (2022). https://doi.org/10.1007/s00034-022-01982-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-01982-z

Keywords

Navigation