Skip to main content
Log in

SDR-Based Wideband Emulator of Non-WSSUS Channels for Vehicular Communications

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a non-wide-sense stationary uncorrelated scattering (non-WSSUS) vehicular channel emulator based on software-defined radios (SDR). The proposed channel emulator can be used for testing new radio communication systems, and it is able to introduce wideband channel distortions over passband signals. Likewise, an affordable and accurate SDR-based channel emulator implementation is reached, as can be seen when it is compared with state-of-the-art channel emulator implementations whose architectures are expensive and do not implement local non-stationary channel models. Current proposals implement non-stationary models by concatenating local stationary processes. The performance of the channel emulator is verified via channel impulse response comparisons and via bit error rate computation when the channel emulator is used for testing vehicular communication systems. Emulation results show that the proposed channel emulator can reproduce non-WSSUS channel propagation environments with exactness, enabling it to be used for testing future vehicular communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data Availability Statement

The data will be made available under request.

References

  1. Analog Devices, ADALM-PLUTO Overview. Accessed 22 Dec 2021. https://www.analog.com/

  2. P. Berlt, F. Wollenschläger, C. Bornkessel, M. A. Hein, Cluster-based radio channel emulation for over-the-air testing of automotive wireless systems, in 2017 11th European Conference on Antennas and Propagation (EUCAP), pp. 2440–2444 (2017)

  3. L. Bernadó, T. Zemen, F. Tufvesson, A. F. Molisch, C. F. Mecklenbräuker, The (in-) validity of the WSSUS assumption in vehicular radio channels, in 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications—(PIMRC), pp. 1757–1762 (2012)

  4. T. Blazek, G. Ghiaasi, C. Backfrieder, G. Ostermayer, C. F. Mecklenbräuker, IEEE 802.11p performance for vehicle-to-anything connectivity in urban interference channels, in 12th European Conference on Antennas and Propagation (EuCAP 2018), pp. 1–5 (2018)

  5. H. C. Bui L. Franck, Cost effective emulation of geostationary satellite channels by means of software-defined radio, in 2014 IEEE Metrology for Aerospace (MetroAeroSpace), pp. 538–542 (2014)

  6. W.-J. Chen, Y.-A. Lai, C.-A. Shen, The VLSI architecture and implementation of a low complexity and highly efficient configurable SVD processor for MIMO communication systems. Circuits Syst. Signal Process. 39(12), 6231–6246 (2020)

    Article  Google Scholar 

  7. W. Fan, P. Kyösti, Y. Ji, L. Hentilä, X. Chen, G.F. Pedersen, Experimental evaluation of user influence on test zone size in multi-probe anechoic chamber setups. IEEE Access 5, 18545–18556 (2017)

    Article  Google Scholar 

  8. T. Fernández-Caramés, M. González-López, L. Castedo, FPGA-based vehicular channel emulator for real-time performance evaluation of IEEE 80.211p transceivers. EURASIP J. Wirel. Commun. Netw. 2010, 04 (2010)

    Article  Google Scholar 

  9. G. Ghiaasi, M. Ashury, D. Vlastaras, M. Hofer, T. Zemen, Real-time vehicular channel emulator for future conformance tests of wireless ITS modems, in 2016 10th European Conference on Antennas and Propagation (EuCAP), pp. 1–5 (2016)

  10. G. Ghiaasi, T. Blazek, M. Ashury, R. R. Santos, C. Mecklenbräuker, Real-time emulation of nonstationary channels in safety-relevant vehicular scenarios, in Wireless Communications and Mobile Computing, p. 11 (2018)

  11. C.A. Gutiérrez, J.T. Gutiérrez-Mena, J.M. Luna-Rivera, D.U. Campos-Delgado, R. Velázquez, M. Pätzold, Geometry-based statistical modeling of non-Wssus mobile-to-mobile Rayleigh fading channels. IEEE Trans. Veh. Technol. 67(1), 362–377 (2018)

    Article  Google Scholar 

  12. M. Hofer, Z. Xu, T. Zemen, Real-time channel emulation of a geometry-based stochastic channel model on a SDR platform, in 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5 (2017)

  13. J.-K. Hwang, K.-H. Lin, J.-D. Li, J.-H. Deng, Fast FPGA prototyping of a multipath fading channel emulator via high-level design, in 2007 International Symposium on Communications and Information Technologies, pp. 168–171 (2007)

  14. J.-K. Hwang, Y.-T. Tsai, J.-D. Li, A highly re-configurable instruments-in-matlab software-defined radio platform for 4G SC-FDMA signal measurements and analysis, in 2011 IEEE/SICE International Symposium on System Integration (SII), pp. 1374–1378 (2011)

  15. IEEE, IEEE standard for information technology—local and metropolitan area networks—specific requirements—part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 6: wireless access in vehicular environments, in IEEE Std 802.11p-2010 (Amendment to IEEE Std 802.11-2007 as Amended by IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE Std 802.11y-2008, IEEE Std 802.11n-2009, and IEEE Std 802.11w-2009), pp. 1–51 (2010)

  16. J.J. Jaime-Rodríguez, C.A. Gómez-Vega, C.A. Gutiérrez, J.M. Luna-Rivera, D.U. Campos-Delgado, R. Velázquez, A non-WSSUS channel simulator for V2X communication systems. Electronics 9(8), 1190 (2020)

    Article  Google Scholar 

  17. G. Joshi, P. R. Prasad, A. Singh, FPGA implementation of channel emulator for testing of wireless air interface using VHDL, in 2016 IEEE International Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT), pp. 728–732 (2016)

  18. T. H. Loh, C. Li, H. Wang, F. Qin, A software-defined-radio platform for multiple-input-multiple-output over-the-air measurement, in 2016 10th European Conference on Antennas and Propagation (EuCAP), pp. 1–4 (2016)

  19. J. Mar, C. Kuo, Y. Lin, T. Lung, Design of software-defined radio channel simulator for wireless communications: case study with DSRC and UWB channels. IEEE Trans. Instrum. Meas. 58(8), 2755–2766 (2009)

    Article  Google Scholar 

  20. T.T.T. Nguyen, N. Ha, Y. Nagao, L. Lanante, H. Ochi, Hardware implementation of a MIMO channel emulator, in International Technical conference on Circuits/Systems Computer and Comunications, p. 06 (2013)

  21. J.S. Park, T. Ogunfunmi, Efficient FPGA-based implementations of MIMO-OFDM physical layer. Circuits Syst. Signal Process. 31(4), 1487–1511 (2012)

    Article  Google Scholar 

  22. C. Politis, S. Maleki, J.M. Duncan, J. Krivochiza, S. Chatzinotas, B. Ottesten, SDR implementation of a testbed for real-time interference detection with signal cancellation. IEEE Access 6, 20807–20821 (2018)

    Article  Google Scholar 

  23. K. Prahlad, B. Ramamurthi, Design and implementation of a multi-terminal channel emulator on LTE testbed, in 2015 Twenty First National Conference on Communications (NCC), pp. 1–6 (2015)

  24. M. Rumney, H. Kong, Y. Jing, Practical active antenna evaluation using the two-stage MIMO ota measurement method, in The 8th European Conference on Antennas and Propagation (EuCAP 2014), pp. 3500–3503 (2014)

  25. A. Schwind, P. Berlt, M. Lorenz, C. Schneider, M. Hein, Over-the-air MIMO channel emulation for automotive LTE radio systems using software defined radio, in 12th European Conference on Antennas and Propagation (EuCAP 2018), pp. 40 (5 pp.)–40 (5 pp.) 2018

  26. V. Sittakul, S. Vijayalakshmi, V. Nagarajan, K. Sakthidasan Sankaran, S. Sankaran, Implementation of high-efficiency and ultra-low-power transceiver for the design of body channel communication applications. Circuits Syst. Signal Process. 39(12), 6034–6057 (2020)

    Article  Google Scholar 

  27. R.W. Stewart, K.W. Barlee, D.S.W. Atkinson, L.H. Crockett, Software Defined Radio Using MATLAB and Simulink and the RTL-SDR (Strathclyde Academic Media, UK, 2015)

  28. The MathWorks, Inc. Configure ADALM-PLUTO radio firmware (2017)

  29. I. Val, F. Casado, P. M. Rodriguez, A. Arriola, FPGA-based wideband channel emulator for evaluation of wireless sensor networks in industrial environments, in Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), pp. 1–7 (2014)

  30. D. Vlastaras, S. Malkowsky, F. Tufvesson, Stress test of vehicular communication transceivers using software defined radio, in 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1–4 (2015)

  31. H. Yan, L. Xiong, D. Fei, Work in progress: LTE system performance evaluation in high-speed environment, in 9th International Conference on Communications and Networking in China, pp. 226–229 (2014)

Download references

Acknowledgements

This work was funded in part by the PROFAPI 2019, PRODEP 2019, and PFCE 2018-ITSON projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Vázquez-Castillo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-García, Á.E., Gutierrez, C.A., Cortez, J. et al. SDR-Based Wideband Emulator of Non-WSSUS Channels for Vehicular Communications. Circuits Syst Signal Process 41, 3832–3852 (2022). https://doi.org/10.1007/s00034-022-01958-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-01958-z

Keywords

Navigation