Abstract
The presented work intends to encounter the challenge of optimizing frequency tracking in the C-band WLAN spectrum, with a tuning range and phase noise (PN) performance. A Quadrature Voltage Controlled Oscillator (QVCO) design in 130 nm CMOS technology has been presented to cover the most sought WLAN/WiFi spectrum of modern wireless systems, employing the current reuse technique and an on-chip inductor implementation. To provide better compensation of LC losses at reduced power dissipation, a cross-coupled structure combining NMOS and PMOS has been used. We have run an extensive simulation using the industry-standard ADS (Keysight technology) platform. The simulation study attributed to the superior phase noise performance of − 160 dBc/Hz at 1 MHz (near fmax) at a power dissipation of 6.52 mW from 1.2 V supply. With the moderate voltage tuning range, the entire desired frequency span of 5.400–5.495 GHz was obtained with a fairly high resolution of 2.375 MHz/1 mV, which allows serving a larger crowd for this spectrum. A fairly moderate VCO gain along with the obtained phase noise and power dissipation provides a well-established Figure of Merit (FOM) of − 187 dB. Finally, a comparison study in terms of power dissipation, phase noise, tuning range, voltage tuning, and Kvco is performed to demonstrate that the provided work is considerably more significant than traditional efforts.
This is a preview of subscription content, access via your institution.








Availability of data and material
Data can be available on request to corresponding author.
References
D. Balodi, V. Arunima, P.A. Govindacharyulu, Low power LC-voltage controlled oscillator with −140 dBc/Hz @ 1 MHz offset using on-chip inductor design in 0.13 mm RF-CMOS process for S-Band application. Circuit World 46(1), 32–41 (2019)
D. Balodi, V. Arunima, P.A. Govindacharyulu, Ultra-wideband quadrature LC-VCO using capacitor-bank and backgate topology with on-chip spirally stacked inductor in 0.13 µm RF-CMOS process covering S-C bands. Microelectron. J. 99, 104727 (2020)
F. Behbahani, Y. Kishigami, J. Leete, A.A. Abidi, CMOS mixers and polyphase filters for large image rejection. IEEE J. Solid-State Circuits. 36(6), 873–887 (2001)
J. Chang, A. Abidi, M. Gaitan, Large suspended inductors on silicon and their use in a 2-μm CMOS RF amplifier. IEEE Electron Device Lett. 14(5), 246–248 (1993)
H. Djahanshahi, C.A.T. Salama, Robust two-stage current-controlled oscillator in submicrometre CMOS. Electron. Lett. 35(21), 1837–1839 (1999)
J.P. Hong, S.-J. Yun, N.-J. Oh, S.-G. Lee, A 2.2-mW backgate coupled LC quadrature VCO with current reused structure. IEEE Microwave Wirel. Compon. Lett. 17(4), 298–300 (2007)
J.W. Shin, J.S. Kim, S.S. Kim, J.K. Choi, A wideband Fractional-N frequency synthesizer with linearized coarse-tuned VCO for UHF/VHF mobile broadcasting tuners. in IEEE Asian Solid-State Circuits Conference Digitial, pp. 440–443 (2007)
M.K.Q. Jooq, A. Bozorgmehr, S. Mirzakuchaki, A low-power delay stage ring VCO based on wrap-gate CNTFET technology for X-band satellite communication applications. Int. J. Circuit Theory Appl. 49(1), 142–158 (2021)
J.H. Kim, A. Tazarv, M.M. Green, Fast Startup of LC VCOs Using Circuit Asymmetries. IEEE Trans. Circuits Syst.—Express Briefs 64(10), 1172–1176 (2017)
S. Li, I. Kipnis, M. Ismail, A 10-GHz CMOS quadrature LC-VCO for multirate optical applications. IEEE J. Solid-State Circuits 38(10), 1626–1634 (2003)
H. Matsuoka, T. Tsukahara, A 5-GHz frequency-doubling quadrature modulator with a ring-type local oscillator. IEEE J. Solid-State Circuits 34(9), 1345–1348 (1999)
Y.J. Moon, Y.-S. Roh, C.-Y. Jeong, C. Yoo, A 4.39–5.26 GHz LC-tank CMOS voltage controlled oscillator with small VCO-gain variation. IEEE Microwave Wireless Comp. Lett. 19(8), 524–526 (2009)
A. Nasri, S. Toofan, M. Estebsari, A. Estebsari, Design of a 41.14–48.11 GHz triple frequency based VCO. Electronics 8(5), 529 (2019)
M.A. Poor, O. Esmaeeli, S. Sheikhaei, A low phase noise quadrature VCO using superharmonic injection, current reuse, and negative resistance techniques in CMOS technology. Analog Integrated Circuits Signal Process. 99(3), 633–644 (2019)
W. Robins, Phase Noise in Signal Sources/Theory and Applications/Book, vol. 8 (Peter Peregrinus, Ltd, London, 1982)
A. Rofougaran et al., A single-chip 900-MHz spread-spectrum wireless transceiver in 1 µm CMOS –Part I: architecture and transmitter design. IEEE J. Solid-State Circuits 33(4), 515–534 (1998)
S. Badel and Yusuf Leblebici, Breaking the power-delay tradeoff: design of low-power high-speed MOS current-mode logic circuits operating with reduced supply voltage. in IEEE International Symposium on Circuits and Systems. pp. 1871–1874 (2007)
S. Gan, Yuan Wang, Jian Cao, Song Jia, Xing Zhang, A 4.9–6.9 GHz LC VCO with low-phase-noise. in IEEE International Conference of Electron Devices and Solid-State Circuits. pp. 1–2 (2013)
A.H.M. Shirazi, A. Nikpaik, R. Molavi, S. Lightbody, H. Djahanshahi, M. Taghivand, S. Mirabbasi, S. Shekhar, On the design of mm-wave self-mixing-VCO architecture for high tuning-range and low phase noise. IEEE J. Solid-State Circuits 51(5), 1210–1222 (2016)
M.S.J. Steyaert, J. Janssens, B. De Muer et al., A 2-V CMOS cellular transceiver front-end. IEEE J. Solid-State Circuits 35(12), 1895–1907 (2000)
F. Ullah, Y. Liu, Z. Li, X. Wang, M.M. Sarfraz, H. Zhang, A Bandwidth-enhanced differential LC-voltage controlled oscillator (LC-VCO) and superharmonic coupled quadrature VCO for K-band applications. Electronics 7(8), 127 (2018)
Q. Wan, J. Dong, H. Zhou, F. Yu, A very low power quadrature VCO with modified current-reuse and back-gate coupling topology. J. Circuits Syst. Comput. 26(11), 1750184 (2017)
C.Z. Wang, J.X. Chen, W.F. Liang, P.P. Yan, J.F. Zhai, W. Hong, Linear CMOS LC-VCO Based on triple-coupled inductors and its application to 40-GHz phase-locked loop. IEEE Trans. Microw. Theory Tech. 65(8), 2977–2989 (2017)
N. Xi, F. Lin, T. Ye, A low phase noise, high phase accuracy quadrature LC-VCO with dual-tail current biasing to insert reconfigurable phase delay. IEEE Trans. Circuits Syst. II Express Briefs 67(3), 450–454 (2019)
H. Yoon, Y. Lee, Y. Lim, G.-Y. Tak, H.-T. Kim, Y.-C. Ho, J. Choi, A 0.56–2.92 GHz wideband and low phase noise quadrature LO-generator using a single LC-VCO for 2G–4G multistandard cellular transceivers. IEEE J. Solid-State Circuits 51(3), 614–625 (2016)
A. Zolfaghari, B. Razavi, A low-power 2.4 GHz transmitter/receiver CMOS IC. IEEE J. Solid-State Circuits. 38(2), 176–183 (2003)
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
IUK involved in conceptualization, methodology, software, writing. DB participated in data curation, project administration, validation. NKM: involved in conceptualization, methodology, software, visualization, writing—review and editing, validation, supervision, original draft.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Khan, I.U., Balodi, D. & Misra, N.K. Low Power LC-Quadrature VCO with Superior Phase Noise Performance in 0.13 µm RF-CMOS Process for Modern WLAN Application. Circuits Syst Signal Process 41, 2522–2540 (2022). https://doi.org/10.1007/s00034-021-01921-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-021-01921-4