Skip to main content

± 0.45 V CMOS Second-Generation Voltage Conveyor Based on Super Source Follower


A simple ultra-low-voltage realization of second-generation voltage conveyor (VCII) based on the employment of super source follower, as voltage follower, and of current follower is presented in this paper. Full CMOS realization of the proposed VCII contains only ten transistors and two biasing voltages except for DC power supply voltages. Thanks to the super source follower structure, the parasitic resistance of the Z terminal is very low. As for parasitic resistance seen at the Y terminal, it can be reduced with the help of biasing voltage of current follower. Furthermore, its value can be tuned through the biasing voltage for different application circuits. Hence, this structure can be used as voltage-controlled second-generation voltage conveyor (VC-VCII). Post-layout simulation results, based on TSMC 0.18 μm CMOS process parameters, are provided. The main attractive features of the proposed VCII can be described as follows: operation under ± 0.45 V power supply voltages, consisting of only ten transistors, free from the body effect, capability of operating in a low-voltage environment, and parasitic resistance value at Z terminal equal to few Ohms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.


  1. 1.

    G. Barile, G. Ferri, L. Safari, V. Stornelli, A new high drive class-AB FVF-based second generation voltage conveyor. IEEE Trans Circuits Syst. II Express Briefs 67(3), 405–409 (2020).

    Article  Google Scholar 

  2. 2.

    G. Barile, L. Safari, G. Ferri, V. Stornelli, A VCII-based stray insensitive analog interface for differential capacitance sensors. Sensors 19(16), 3545 (2019).

    Article  Google Scholar 

  3. 3.

    G. Barile, V. Stornelli, G. Ferri, L. Safari, E. D’Amico, A new rail-to-rail second generation voltage conveyor. Electronics 8(11), 1292 (2019).

    Article  Google Scholar 

  4. 4.

    T. Dostál, J. Pospíšil, Hybrid models of 3-port immittance convertors and current and voltage conveyors. Electron. Lett. 18(20), 887–888 (1982).

    Article  Google Scholar 

  5. 5.

    G. Ferri, N.C. Guerrini, Low-Voltage Low-Power CMOS Current Conveyors (Kluwer Academic publishers, New York, 2003)

    Google Scholar 

  6. 6.

    G. Ferri, N.C. Guerrini, Noise determination in differential pair-based second generation current conveyors. Analog Integr. Circuits Signal Process. 41(1), 35–46 (2004).

    Article  Google Scholar 

  7. 7.

    I.M. Filanovsky, Current conveyor, voltage conveyor, gyrator, in Proceedings of the 44th IEEE 2001 Midwest Symposium on Circuits and Systems. MWSCAS 2001 (Cat. No.01CH37257), vol. 1, No. 4 (2001), pp. 314–317.

  8. 8.

    I.M. Filanovsky, K.A. Stromsmoe, Current-voltage conveyor. Electron. Lett. 17(3), 129–130 (1981).

    Article  Google Scholar 

  9. 9.

    M. Kumngern, U. Torteanchai, and F. Khateb, CMOS Class AB Second Generation Voltage Conveyor, in 2019 IEEE International Circuits and Systems Symposium (ICSyS), vol 4 (2019), pp. 1–4.

  10. 10.

    P. Rani, R. Pandey, Voltage Conveyor based Electronically Tunable Multifunction Biquadractic Filter, in 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN) (2020), pp. 1110–1113.

  11. 11.

    L. Safari, G. Barile, G. Ferri, V. Stornelli, A new low-voltage low-power dual-mode VCII-based SIMO universal filter. Electronics 8(7), 765 (2019).

    Article  Google Scholar 

  12. 12.

    L. Safari, G. Barile, G. Ferri, V. Stornelli, High performance voltage output filter realizations using second generation voltage conveyor. Int. J. RF Microw. Comput. Eng. 28(9), e21534 (2018).

    Article  Google Scholar 

  13. 13.

    L. Safari, G. Barile, V. Stornelli, G. Ferri, A new versatile full wave rectifier using voltage conveyors. AEU Int. J. Electron. Commun. 122, 153267 (2020).

    Article  Google Scholar 

  14. 14.

    L. Safari, G. Barile, V. Stornelli, G. Ferri, An overview on the second generation voltage conveyor: features, design and applications. IEEE Trans. Circuits Syst. II Express Briefs 66(4), 547–551 (2019).

    Article  Google Scholar 

  15. 15.

    L. Safari, E. Yuce, S. Minaei, G. Ferri, V. Stornelli, A second-generation voltage conveyor (VCII)—based simulated grounded inductor. Int. J. Circuit Theory Appl. 48(7), 1180–1193 (2020).

    Article  Google Scholar 

  16. 16.

    V. Stornelli, L. Safari, G. Barile, G. Ferri, A new extremely low power temperature insensitive electronically tunable VCII-based grounded capacitance multiplier. IEEE Trans. Circuits Syst. II Express Briefs 68(1), 72–76 (2021).

    Article  Google Scholar 

  17. 17.

    A. Yesil, S. Minaei, New simple transistor realizations of second- generation voltage conveyor. Int. J. Circuit Theory Appl. 48(11), 2023–2038 (2020).

    Article  Google Scholar 

  18. 18.

    E. Yuce, L. Safari, S. Minaei, G. Ferri, V. Stornelli, New mixed-mode second-generation voltage conveyor based first-order all-pass filter. IET Circuits Devices Syst. 14(6), 901–907 (2020).

    Article  Google Scholar 

Download references


We are thankful to Istanbul Technical University VLSI Laboratories for the Cadence Design Environment support.

Author information



Corresponding author

Correspondence to Abdullah Yesil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yesil, A., Minaei, S. & Psychalinos, C. ± 0.45 V CMOS Second-Generation Voltage Conveyor Based on Super Source Follower. Circuits Syst Signal Process (2021).

Download citation


  • VCII
  • Voltage conveyor
  • Super source follower
  • Low voltage
  • Low power
  • CMOS analog integrated circuits