Skip to main content
Log in

Image Deblurring Using a Robust Loss Function

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Deblurring images with outliers has always been a significantly challenging problem. Previous methods mainly involved complex operations, such as outlier and light streak detection, or sophisticated image priors for blur-kernel estimation, which increased the difficulty of deblurring images. Therefore, we developed a simple, yet efficient, blind deblurring algorithm in this study for handling images with outliers. To eliminate the impact of outliers during the kernel estimation process, we employed a robust Welsch loss function to characterize the data-fidelity term of our model. We observed that this function could extract significant edges successfully. Therefore, the image regularization term was also described by the same function. Using this unified robust function to describe our model can considerably reduce the complexity of the algorithm. Moreover, we derived a flexible weight function from the Welsch function to further improve the efficiency of our algorithm. To finally obtain accurate latent images, we developed a robust non-blind deblurring approach based on this flexible weight function. The experimental results indicate that our approach outperforms state-of-the-art methods in deblurring images with or without outliers. Compared with the method specifically for outliers, the recovery performance of our method can be improved by 12.9% (considering a dataset with impulse noise), and the execution efficiency is about 1.5 times faster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author on request.

References

  1. H. Badri, H. Yahia, D. Aboutajdine, Fast edge-aware processing via first order proximal approximation. IEEE Trans. Visual Comput. Graph. 21(6), 743–755 (2015)

    Article  Google Scholar 

  2. J. T. Barron, A general and adaptive robust loss function, in: CVPR, 2019, pp. 4331–4339

  3. A. Chakrabarti, A neural approach to blind motion deblurring, in: ECCV, 2016, pp. 221–235

  4. L. Chen, F. Fang, T. Wang, G. Zhang, Blind image deblurring with local maximum gradient prior, in: CVPR, 2019, pp. 1743–1750

  5. S. Cho, S. Lee, Fast motion deblurring. ACM Trans. Graph. 28(5), 1–8 (2009)

    Article  Google Scholar 

  6. S. Cho, J. Wang, S. Lee, Handling outliers in non-blind image deconvolution, in: ICCV, 2011, pp. 495–502

  7. J.E. Dennis Jr., R.E. Welsch, Techniques for nonlinear least squares and robust regression. Commun. Stat.-Simul. Comput. 7(4), 345–359 (1978)

    Article  Google Scholar 

  8. J. Dong, J. Pan, Z. Su, M.-H. Yang, Blind image deblurring with outlier handling, in: ICCV, 2017, pp. 2478–2486

  9. J. Dong, J. Pan, D. Sun, Z. Su, M.-H. Yang, Learning data terms for non-blind deblurring, in: ECCV, 2018, pp. 777–792

  10. R. Fergus, B. Singh, A. Hertzmann, S.T. Roweis, W.T. Freeman, Removing camera shake from a single photograph. ACM Trans. Graph. 25(3), 787–794 (2006)

    Article  Google Scholar 

  11. D. Gong, M. Tan, Y. Zhang, A. Hengel, Q. Shi, Blind image deconvolution by automatic gradient activation, in: CVPR, 2016, pp. 1827–1836

  12. D. Gong, M. Tan, Y. Zhang, A. Hengel, Q. Shi, Self-paced kernel estimation for robust blind image deblurring, in: ICCV, 2017, pp. 1661–1670

  13. B. Ham, M. Cho, J. Ponce, Robust guided image filtering using nonconvex potentials. IEEE Trans. Pattern Anal. Mach. Intell. 40(1), 192–207 (2018)

    Article  Google Scholar 

  14. M. Hirsch, C.J. Schuler, S. Harmeling, B. Schölkopf, Fast removal of non-uniform camera shake, in: ICCV, 2011, pp. 463–470

  15. Z. Hu, S. Cho, J. Wang, M.-H. Yang, Deblurring low-light images with light streaks, in: CVPR, 2014, pp. 3382–3389

  16. N. Joshi, R. Szeliski, D.J. Kriegman, PSF estimation using sharp edge prediction, in: CVPR, 2008, pp. 1–8

  17. R. Köhler, M. Hirsch, B. Mohler, B. Schölkopf, S. Harmeling, Recording and playback of camera shake: benchmarking blind deconvolution with a real-world database, in: ECCV, 2012, pp. 27–40

  18. D. Krishnan, J. Bruna, R. Fergus, Blind deconvolution with re-weighted sparsity promotion, 2013. CoRR abs/1311.4029

  19. D. Krishnan, R. Fergus, Fast image deconvolution using Hyper-Laplacian priors, in: NIPS, 2009, pp. 1033–1041

  20. D. Krishnan, T. Tay, R. Fergus, Blind deconvolution using a normalized sparsity measure, in: CVPR, 2011, pp. 233–240

  21. O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, J. Matas, DeblurGAN: blind motion deblurring using conditional adversarial networks, in: CVPR, 2017, pp.8183–8192

  22. A. Levin, R. Fergus, F. Durand, W.T. Freeman, Image and depth from a conventional camera with a coded aperture. ACM Trans. Graph. 26(3), 70–78 (2007)

    Article  Google Scholar 

  23. A. Levin, Y. Weiss, F. Durand, W.T. Freeman, Understanding and evaluating blind deconvolution algorithms, in: CVPR, 2009, pp. 1964–1971

  24. A. Levin, Y. Weiss, F. Durand, W.T. Freeman, Efficient marginal likelihood optimization in blind deconvolution, in: CVPR, 2011, pp. 2657–2664

  25. L. Li, J. Pan, W.-S. Lai, C. Gao, N. Sang, M.-H. Yang, Blind image deblurring via deep discriminative priors. Int. J. Comput. Vis. 127(8), 1025–1043 (2019)

    Article  Google Scholar 

  26. J. Liu, M. Yan, T. Zeng, Surface-aware blind image deblurring. IEEE Trans. Pattern Anal. Mach. Intell. (2019). https://doi.org/10.1109/TPAMI.2019.2941472

    Article  Google Scholar 

  27. T. Michaeli, M. Irani, Blind deblurring using internal patch recurrence, in: ECCV, 2014, pp. 783–798

  28. S.Nah, T. Kim, K. Lee, Deep multi-scale convolutional neural network for dynamic scene deblurring, in: CVPR, 2017, pp. 3883–3891

  29. J. Pan, Z. Hu, Z. Su, M.-H. Yang, Deblurring text images via L0-regularized intensity and gradient prior, in: CVPR, 2014, pp. 2901–2908

  30. J. Pan, Z. Lin, Z. Su, M.-H. Yang, Robust kernel estimation with outliers handling for image deblurring, in: CVPR, 2016, pp. 2800–2808

  31. J. Pan, R. Liu, Z. Su, X. Gu, Kernel estimation from salient structure for robust motion deblurring. Signal Process.: Image Commun. 28(9), 1156–1170 (2013)

    Google Scholar 

  32. J. Pan, Z. Su, Fast L0-regularized kernel estimation for robust motion deblurring. IEEE Signal Process. Lett. 20(9), 841–844 (2013)

    Article  Google Scholar 

  33. J. Pan, D. Sun, H. Pfister, M.-H. Yang, Blind image deblurring using dark channel prior, in: CVPR, 2016, pp. 1628–1636

  34. D. Perrone, R. Diethelm, P. Favaro, Blind deconvolution via lower-bounded logarithmic image priors, in: EMMCVPR, 2015, pp. 112–125

  35. D. Perrone, P. Favaro, Total variation blind deconvolution: the devil is in the details, in: CVPR, 2014, pp. 2909–2916

  36. W. Ren, X. Cao, J. Pan, X. Guo, W. Zuo, M.-H. Yang, Image deblurring via enhanced low rank prior. IEEE Trans. Image Process. 25(7), 3426–3437 (2016)

    Article  MathSciNet  Google Scholar 

  37. Q. Shan, J. Jia, A. Agarwala, High-quality motion deblurring from a single image. ACM Trans. Graph. 27(3), 1–10 (2008)

    Article  Google Scholar 

  38. J. Sun, W. Cao, Z. Xu, J. Ponce, Learning a convolutional neural network for non-uniform motion blur removal, in: CVPR, 2015, pp.769–777

  39. L. Sun, S. Cho, J. Wang, J. Hays, Edge-based blur kernel estimation using patch priors, in: ICCP, 2013, pp. 1–8

  40. Y. Tang, Y. Xue, Y. Chen, L. Zhou, Blind deblurring with sparse representation via external patch priors. Digital Signal Process. 78, 322–331 (2018)

    Article  Google Scholar 

  41. X. Tao, H. Gao, X. Shen, J. Wang, J. Jia, Scale-recurrent network for deep image deblurring, in: CVPR, 2018, pp. 8174–8182

  42. O. Whyte, J. Sivic, A. Zisserman, Deblurring shaken and partially saturated images. Int. J. Comput. Vis. 110(2), 185–201 (2014)

    Article  Google Scholar 

  43. L. Xu, J. Jia, Two-phase kernel estimation for robust motion deblurring, in: ECCV, 2010, pp. 157–170.

  44. L. Xu, J. Ren, C. Liu, J. Jia, Deep convolutional neural network for image deconvolution, in: NIPS, 2014, pp. 1790–1798

  45. L. Xu, S. Zheng, J. Jia, Unnatural L0 sparse representation for natural image deblurring, in: CVPR, 2013, pp. 1107–1114

  46. Z. Xu, H. Chen, Z. Li, Blind image deblurring using group sparse representation. Digital Signal Process. (2020). https://doi.org/10.1016/j.dsp.2020.102736

    Article  Google Scholar 

  47. Z. Xu, H. Chen, Z. Li, Blind image deblurring via the weighted Schatten p-norm minimization prior. Circuits Syst. Signal Process. 39, 6191–6230 (2020)

    Article  Google Scholar 

  48. Z. Xu, H. Chen, Z. Li, Fast blind deconvolution using a deeper sparse patch-wise maximum gradient prior. Signal Process.: Image Commun. (2020). https://doi.org/10.1016/j.image.2020.116050

    Article  Google Scholar 

  49. Y. Yan, W. Ren, Y. Guo, R. Wang, X. Cao, Image deblurring via extreme channels prior, in: CVPR, 2017, pp. 6978–6986

  50. J. Zhang, J. Pan, J. Ren, Y. Song, L. Bao, R. Lau, M.-H. Yang, Dynamic scene deblurring using spatially variant recurrent neural networks, in: CVPR, 2018, pp. 2521–2529

  51. X. Zhou, M. Vega, F. Zhou, R. Molina, A.K. Katsaggelos, Fast Bayesian blind deconvolution with Huber Super Gaussian priors. Digital Signal Process. 60, 122–133 (2017)

    Article  Google Scholar 

  52. D. Zoran, Y. Weiss, From learning models of natural image patches to whole image restoration, in: ICCV, 2011, pp. 479–486

Download references

Acknowledgements

This work has been supported by National Natural Science Foundation of China (Grant No. 61971225), and National Science and Industry Bureau (Grant No. JCKY2016606B001). We would like to thank Editage (www.editage.cn) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenhua Xu or Jiancheng Lai.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Lai, J., Zhou, J. et al. Image Deblurring Using a Robust Loss Function. Circuits Syst Signal Process 41, 1704–1734 (2022). https://doi.org/10.1007/s00034-021-01857-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01857-9

Keywords

Navigation