Skip to main content
Log in

Direction-Finding and Polarization Estimation with Spread Orthogonal Loop and Dipole Arrays

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a new array configuration termed as Spread Orthogonal Loop and Dipole (SOLD) array is presented for estimating direction and polarization parameters of multiple incident signals. In the SOLD array configuration, the spacings of any two adjacent SOLD antennas are set to be mutual primes with respect to a half-wavelength. Moreover, the loop is separated far away from the dipole within a single SOLD antenna. This SOLD array configuration thus imposes a significantly less antenna mutual coupling effect. To demonstrate the practical value of the SOLD array, a joint direction and polarization estimation algorithm is developed subsequently. Simulations are carried out to justify the SOLD array in improving parameter estimation accuracy and in reducing the effect of mutual coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. C. A Balanis, Antenna Theory: Analysis and Design, 3rd ed (Wiley, Hoboken)

  2. H. Chen, W. Wang, W. Liu, Joint DOA, range, and polarization estimation for rectilinear sources with a COLD array. IEEE Commun. Lett. 8(5), 1398–1401 (2019)

    Article  Google Scholar 

  3. H. Chen, W. Wang, W. Liu, Augmented quaternion ESPRIT-type DOA estimation with a crossed-dipole array. IEEE Commun. Lett. 24(3), 548–552 (2020)

    Article  Google Scholar 

  4. B. Friedlander, A. Weiss, Direction finding in the presence of mutual coupling. IEEE Trans. Antennas Propag. 39(3), 273–284 (1991)

    Article  Google Scholar 

  5. J. He, M.O. Ahmad, M.N.S. Swamy, Near-field localization of partially polarized sources with a cross-dipole array. IEEE Trans. Aerosp. Electron. Syst. 49(2), 857–870 (2013)

    Article  Google Scholar 

  6. J. He, L. Li, T. Shu, Near-field parameter estimation for polarized source using spatial amplitude ratio. IEEE Commun. Lett. 24(9), 1961–1965 (2020)

    Article  Google Scholar 

  7. J. He, L. Li, T. Shu, Direction finding of mixed fully and partially polarized sources using linear COLD arrays. Signal Process. (2021). https://doi.org/10.1016/j.sigpro.2020.107815

    Article  Google Scholar 

  8. J. He, M.O. Ahmad, M.N.S. Swamy, Extended-aperture angle-range estimation of multiple Fresnel-region sources with a linear tripole array using cumulants. Signal Process. 92(4), 939–953 (2012)

    Article  Google Scholar 

  9. J. He, L. Li, T. Shu, Sparse nested arrays with spatially spread orthogonal dipoles: high accuracy passive direction finding with less mutual coupling. IEEE Trans. Aerosp. Electron. Syst. (2021). https://doi.org/10.1109/TAES.2021.3054056

    Article  Google Scholar 

  10. J. He, Z. Zhang, T. Shu, and W. Yu, Sparse nested array with aperture extension for high accuracy angle estimation, Signal Process., 176, Article 107700, (2020)

  11. W. Hu, Q. Wang, DOA estimation for UCA in the presence of mutual coupling via error model equivalence. IEEE Wireless Commun. Lett. 9(1), 121–124 (2020)

    Article  Google Scholar 

  12. X. Lan, W. Liu, H.Y.T. Ngan, Joint DOA and polarisation estimation with crossed-dipole and tripole sensor arrays. IEEE Trans. Aerosp. Electron. Syst. 56(6), 4965–4973 (2020)

    Article  Google Scholar 

  13. C. Liu, P.P. Vaidyanathan, Super nested arrays: linear sparse arrays with reduced mutual coupling-Part I: fundamentals. IEEE Trans. Signal Process. 64(15), 3997–4012 (2016)

    Article  MathSciNet  Google Scholar 

  14. C. Liu, P.P. Vaidyanathan, Super nested arrays: linear sparse arrays with reduced mutual coupling-Part II: high-order extensions. IEEE Trans. Signal Process. 64(6), 4203–4217 (2016)

    Article  MathSciNet  Google Scholar 

  15. J. Nagar, B.Q. Lu, M.F. Pantoja, D.H. Werner, Analytical expressions for the mutual coupling of loop antennas valid from the RF to optical regimes. IEEE Trans. Antennas Propag. 65(12), 6889–6903 (2017)

    Article  Google Scholar 

  16. A. Nehorai, E. Paldi, Vector-sensor array processing for electromagnetic source localization. IEEE Trans. Signal Process. 42(2), 376–398 (1994)

    Article  Google Scholar 

  17. A. Raza, W. Liu, Q. Shen, Thinned coprime array for second-order difference co-array generation with reduced mutual coupling. IEEE Trans. Signal Process. 67(8), 2052–2065 (2019)

    Article  MathSciNet  Google Scholar 

  18. R. Roy, T. Kailath, ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 37(7), 984–995 (1989)

    Article  Google Scholar 

  19. J. Shi, G. Hu, X. Zhang, H. Zhou, Generalized nested array: optimization for degrees of freedom and mutual coupling. IEEE Commun. Lett. 22(6), 1208–1211 (2018)

    Article  Google Scholar 

  20. W. Si, Y. Wang, C. Zhang, 2D-DOA and polarization estimation using a novel sparse representation of covariance matrix with COLD array. IEEE Access 6, 66385–66395 (2018)

    Article  Google Scholar 

  21. M. Tang, T. Shu, J. He, C. Xu, Direction-finding with spread array of identical doublets. IEEE Commun. Lett. 25(1), 142–146 (2021)

    Article  Google Scholar 

  22. H.L. Van Trees, Optimum Array Processing, Part IV of Detection, Estimation, and Modulation Theory (Wiley, New York, 2002)

    Google Scholar 

  23. Q. Wang, X. Wang, H. Chen, DOA estimation algorithm for strictly noncircular sources with unknown mutual coupling. IEEE Commun. Lett. 23(12), 2215–2218 (2019)

    Article  Google Scholar 

  24. X. Wang, D. Meng, M. Huang, L. Wan, Reweighted regularized sparse recovery for DOA estimation with unknown mutual coupling. IEEE Commun. Lett. 23(2), 290–293 (2019)

    Article  Google Scholar 

  25. X. Wang, L. Wan, M. Huang, C. Shen, K. Zhang, Polarization channel estimation for circular and non-circular signals in Massive MIMO systems. IEEE J. Sel. Top. Signal Process. 13(5), 1001–1016 (2019)

    Article  Google Scholar 

  26. Y. Wang, L. Wang, J. Xie, M. Trinkle, B.W. Ng, DOA estimation under mutual coupling of uniform linear arrays using sparse reconstruction. IEEE Wireless Commun. Lett. 8(4), 1004–1007 (2019)

    Article  Google Scholar 

  27. M. Yang, J. Ding, B. Chen, X. Yuan, A multiscale sparse array of spatially spread electromagnetic-vector-sensors for direction finding and polarization estimation. IEEE Access 6, 9807–9818 (2018)

    Article  Google Scholar 

  28. Z. Zheng, W. Wang, Y. Kong, Y.D. Zhang, MISC array: a new sparse array design achieving increased degrees of freedom and reduced mutual coupling effect. IEEE Trans. Signal Process. 67(7), 1728–1741 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, M., Shu, T., He, J. et al. Direction-Finding and Polarization Estimation with Spread Orthogonal Loop and Dipole Arrays. Circuits Syst Signal Process 40, 6401–6415 (2021). https://doi.org/10.1007/s00034-021-01776-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01776-9

Keywords

Navigation