Skip to main content
Log in

Design of a Two-Channel Quadrature Mirror Filter Bank Through a Diversity-Driven Multi-Parent Evolutionary Algorithm

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A multi-objective problem-solving technique for designing a two-channel quadrature mirror filter bank is proposed, where the objectives are to minimize the errors of the passband, stopband and transition band. An evolution-based algorithm, “diversity-driven multi-parent evolutionary algorithm with adaptive non-uniform mutation” (DDMPEA), is proposed for this purpose. The proposed algorithm employs the concepts of population space aggregation and fitness variance to guide the solution away from local optima. This algorithm is also validated on benchmark optimization problems. Furthermore, Wilcoxon’s test for statistical analysis at a 5% significance level confirms the effectiveness of the algorithm. From Wilcoxon’s rank-sum test, it is clear that for all considered benchmark functions, the DDMPEA is superior to other state-of-the-art optimization algorithms. The results achieved from the designed filter are compared with other available results from the existing literature. The percentage improvements in peak reconstruction error, attenuation of the stopband, and overall amplitude distortion are calculated for filter lengths of 32 and 48.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. O. Aase, Filter bank design for Subband ECG compression. In Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 4 (1996), p. 1382–1383

  2. V.X. Afonso, W.J. Tompkins, ECG beat detecting using filter banks. IEEE Trans. Biomed. Eng. 46(2), 192–202 (1999)

    Article  Google Scholar 

  3. M.Z. Ali, N.H. Awad, P.N. Suganthan, A.M. Shatnawi, R.G. Reynolds, An improved class of real-coded genetic algorithms for numerical optimization. Neurocomputing 275, 155–166 (2018). https://doi.org/10.1016/j.neucom.2017.05.054

    Article  Google Scholar 

  4. D. Atul Kumar, Subhojit, N.D. Londhe, Low-power FIR filter design using hybrid artificial Bee colony algorithm with experimental validation over FPGA. Circuits Syst. Signal Process. 36(1), 156–180 (2016). https://doi.org/10.1007/s00034-016-0297-4

    Article  MATH  Google Scholar 

  5. D. Atul Kumar, Subhojit, N.D. Londhe, Review and analysis of evolutionary optimization-based techniques for FIR filter design. Circuits Syst. Signal Process. 37(10), 4409–4430 (2018). https://doi.org/10.1007/s00034-018-0772-1

    Article  Google Scholar 

  6. A. Babalik, A. Ozkis, S.A. Uymaz, M.S. Kiran, A multi-objective artificial algae algorithm. Appl. Soft Comput. J. 68, 377–395 (2018). https://doi.org/10.1016/j.asoc.2018.04.009

    Article  Google Scholar 

  7. K. Baderia, A. Kumar, G.K. Singh, Design of multi-channel cosine-modulated filter bank based on fractional derivative constraints using cuckoo search algorithm. Circuits Syst. Signal Process. 34(10), 3325–3351 (2015). https://doi.org/10.1007/s00034-015-0008-6

    Article  Google Scholar 

  8. M.G. Bellanger, J.L. Daguet, TDM-FDM transmultiplexer: digital polyphase and FFT. IEEE Trans. Commun. 22(9), 1199–1204 (1974)

    Article  Google Scholar 

  9. S.C. Chan, K.S.C. Pun, K.L. Ho, New design and realization techniques for a class of perfect reconstruction two channel FIR filter banks and wavelet bases. IEEE Trans. Signal Process. 52(7), 2135–2141 (2004)

    Article  Google Scholar 

  10. S. Chandran, A novel scheme for a sub-band adaptive beam forming array implementation using quadrature mirror filter banks. Electronics 39(12), 891–892 (2003)

    Google Scholar 

  11. S. Chauhan, M. Singh, A. K Agarwal, Crisscross optimization algorithm for the designing of quadrature mirror filter bank. In International Conference on Intelilgent Communication and Computational Techniques, (2019), p. 124–130

  12. S. Chauhan, M. Singh, A.K. Agarwal, Diversity driven multi-parent evolutionary algorithm with adaptive non-uniform mutation. J. Exp. Theor. Artif. Intell. 2020, 1–32 (2020)

    Article  Google Scholar 

  13. C.K. Chen, J.H. Lee, Design of quadrature mirror filter with linear phase in the frequency domain. IEEE Trans. Circuits Syst. 39(9), 593–605 (1992)

    Article  Google Scholar 

  14. A. Croisier, D. Esteban, C. Galand, Perfect channel splitting by use of interpolation/decimation/tree decomposition techniques. In International Conference on Information Sciences and Systems, (1977)

  15. C. Dai, Y. Wang, A new decomposition based evolutionary algorithm with uniform designs for many-objective optimization. Appl. Soft Comput. J. 30, 238–248 (2015). https://doi.org/10.1016/j.asoc.2015.01.062

    Article  Google Scholar 

  16. S. Dhabal, P. Venkateswaran, An efficient Gbest-guided Cuckoo Search algorithm for higher order two channel filter bank design. Swarm Evolut. Comput. 33(2017), 68–84 (2017). https://doi.org/10.1016/j.swevo.2016.10.003

    Article  Google Scholar 

  17. K.K. Dhaliwal, J.S. Dhillon, Integrated Cat swarm optimization and differential evolution algorithm for optimal IIR filter design in multi-objective framework. Circuits Syst. Signal Process. 36(1), 270–296 (2016). https://doi.org/10.1007/s00034-016-0304-9

    Article  MATH  Google Scholar 

  18. R. Eberhart, Y. Shi, Comparison between genetic algorithms and particle swarm optimization. Evolut. Progr. VII 1447, 611–616 (1998)

    Google Scholar 

  19. P. Ghosh, H. Zafar, J. Banerjee, S. Das, Design of two-channel quadrature mirror filter banks using differential evolution with global and local neighborhoods. In SEMCOO, (2011), p. 304–313

  20. G. Gu, E.F. Badran, Optimal design for channel equalization via the Filterbank approach. IEEE Trans. Signal Process. 52(2), 536–545 (2004)

    Article  MathSciNet  Google Scholar 

  21. S.S. Hao, L.W. Chen, Y.D. Jou, Design of two-channel quadrature mirror Filter banks using minor component analysis algorithm. Circuits Syst. Signal Process. Syst. Signal Process. 34(5), 1549–1569 (2014). https://doi.org/10.1007/s00034-014-9914-2

    Article  MathSciNet  Google Scholar 

  22. R.S. Holambe, B.D. Patil, S.P. Madhe, On the design of arbitrary shape two-channel Filter bank using eigenfilter approach. Circuits Syst. Signal Process. 36(11), 4441–4452 (2017). https://doi.org/10.1007/s00034-017-0519-4

    Article  MATH  Google Scholar 

  23. J.H. Husgy, T. Gjegde, Computationally signals efficient sub-band coding of ECG signals. Med. Eng. Phys. 18(2), 132–142 (1996)

    Article  Google Scholar 

  24. P. Kaelo, M.M. Ali, A numerical study of some modified differential evolution algorithms. Eur. J. Oper. Res. 169(3), 1176–1184 (2006). https://doi.org/10.1016/j.ejor.2004.08.047

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Kaur, M.S. Patterh, J.S. Dhillon, Real coded genetic algorithm for design of IIR digital filter with conflicting objectives. Appl. Math. Inf. Sci. 8(5), 2635–2644 (2014)

    Article  Google Scholar 

  26. B. Kuldeep, V.K. Singh, A. Kumar, G.K. Singh, Design of two-channel filter bank using nature inspired optimization based fractional derivative constraints. ISA Trans. 54(2014), 101–116 (2014). https://doi.org/10.1016/j.isatra.2014.06.005

    Article  Google Scholar 

  27. A. Kumar, G.K. Singh, R.S. Anand, An improved method for the design of quadrature mirror filter banks using the Levenberg–Marquardt optimization. SIViP 7(2), 209–220 (2013). https://doi.org/10.1007/s11760-011-0209-9

    Article  Google Scholar 

  28. X. Li, H. Shen, L. Zhang, H. Zhang, Q. Yuan, G. Yang, Contaminated by thick clouds and shadows using multitemporal dictionary learning. IEEE Trans. Geosc. Remote Sens. 52(11), 7086–7098 (2014)

    Article  Google Scholar 

  29. X. Li, M. Yin, Modified cuckoo search algorithm with self adaptive parameter method. Inf. Sci. (2014). https://doi.org/10.1016/j.ins.2014.11.042

    Article  Google Scholar 

  30. Y.C. Lim, R.H. Yang, S.N. Koh, The design of weighted minimax quadrature mirror filters. IEEE Trans. Signal Process. 41(5), 1780–1789 (1993). https://doi.org/10.1109/78.215299

    Article  MATH  Google Scholar 

  31. R. Liu, J. Li, J. Fan, L. Jiao, A dynamic multiple populations particle swarm optimization algorithm based on decomposition and prediction. Appl. Soft Comput. J. 73, 434–459 (2018). https://doi.org/10.1016/j.asoc.2018.08.015

    Article  Google Scholar 

  32. J. Lu, J. Xuan, G. Zhang, X. Luo, Structural property-aware multilayer network embedding for latent factor analysis. Pattern Recogn. 76(2018), 228–241 (2018). https://doi.org/10.1016/j.patcog.2017.11.004

    Article  Google Scholar 

  33. M.K. Marichelvam, T. Prabaharan, X.S. Yang, Improved cuckoo search algorithm for hybrid flow shop scheduling problems to minimize makespan. Appl. Soft Comput. J. 19, 93–101 (2014). https://doi.org/10.1016/j.asoc.2014.02.005

    Article  Google Scholar 

  34. S. Mirjalili, The Ant Lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015). https://doi.org/10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  35. S. Mirjalili, SCA: a Sine Cosine algorithm for solving optimization problems. Knowl. Based Syst. 96, 120–133 (2016). https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  36. S. Mirjalili, A.H. Gandomi, S. Zahra, S. Saremi, Salp swarm algorithm : a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017). https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  37. S. Mirjalili, A. Lewis, The Whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016). https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  38. X. Ni, S. Wen, H. Wang, Z. Guo, S. Zhu, T. Huang, Observer-based quasi-synchronization of delayed under impulsive effect. IEEE Trans. Neural Netw. Learn. Syst., (2020)

  39. A. Petraglia, S.K. Mitra, High-speed A/D conversion incorporating a QMF bank. IEEE Trans. Instrum. Meas. 41(3), 427–431 (1992)

    Article  Google Scholar 

  40. G. Peyré, A review of adaptive image representations. IEEE J. Sel. Top. Signal Process. 5(5), 896–911 (2011)

    Article  Google Scholar 

  41. S.M. Rafi, A. Kumar, G.K. Singh, An improved particle swarm optimization method for multirate filter bank design. J. Frankl. Inst. 350(4), 757–769 (2013). https://doi.org/10.1016/j.jfranklin.2013.01.006

    Article  MathSciNet  MATH  Google Scholar 

  42. M. Sablatash, Design and archietectures of filter bank trees for spectrally efficient multi-user communications: review, modifications and extensions of wavelet packet filter bank trees. SIViP 5(1), 09–37 (2008)

    Article  Google Scholar 

  43. O.P. Sahu, M.K. Soni, I.M. Talwar, Marquardt optimization method to design two-channel quadrature mirror filter banks. Digit. Signal Process. A Rev. J. 16(6), 870–879 (2006). https://doi.org/10.1016/j.dsp.2005.11.002

    Article  Google Scholar 

  44. H. Shi, S. Liu, H. Wu, R. Li, S. Liu, N. Kwok, Oscillatory particle swarm optimizer. Appl. Soft Comput. J. 73, 316–327 (2018). https://doi.org/10.1016/j.asoc.2018.08.037

    Article  Google Scholar 

  45. D.S. Sidhu, J.S. Dhillon, Design of digital IIR filter with conflicting objectives using hybrid predator—prey optimization. Circuits Syst. Signal Process. 35(7), 2117–2141 (2017). https://doi.org/10.1007/s00034-017-0656-9

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Singh, J.S. Dhillon, Multiobjective thermal power dispatch using opposition-based greedy heuristic search. Int. J. Electr. Power Energy Syst. 82, 339–353 (2016). https://doi.org/10.1016/j.ijepes.2016.03.016

    Article  Google Scholar 

  47. M.J.T. Smith, S.L. Eddins, Analysis/Synthesis techniques for subband image coding. IEEE Trans. Acoust. Speech Signal Process. 38(8), 1446–1456 (1990)

    Article  Google Scholar 

  48. M.R. Tanweer, S. Suresh, N. Sundararajan, Self regulating particle swarm optimization algorithm. Inf. Sci. 294, 182–202 (2015). https://doi.org/10.1016/j.ins.2014.09.053

    Article  MathSciNet  MATH  Google Scholar 

  49. Y. Wang, Y. Cao, Z. Guo, T. Huang, S. Wen, Event-based sliding-mode synchronization of delayed memristive neural networks via continuous/periodic sampling algorithm. Appl. Math. Comput. 383(2020), 125379 (2020). https://doi.org/10.1016/j.amc.2020.125379

    Article  MathSciNet  MATH  Google Scholar 

  50. W. Xiang, M. An, An efficient and robust artificial bee colony algorithm for numerical optimization. Comput. Oper. Res. 40(5), 1256–1265 (2013). https://doi.org/10.1016/j.cor.2012.12.006

    Article  MathSciNet  MATH  Google Scholar 

  51. Y. Yanyi Cao, Z. Cao, T. Guo, S.W. Huang, Global exponential synchronization of delayed memristive neural networks with reaction-diffusion terms. Neural Netw. 123(2019), 70–81 (2019). https://doi.org/10.1016/j.neunet.2019.11.008

    Article  MATH  Google Scholar 

  52. Y. Yu, Y. Xinjie, Cooperative coevolutionary Genetic algorithm for digital IIR filter design. IEEE Trans. Ind. Electron. 54(3), 1311–1318 (2007)

    Article  Google Scholar 

  53. S. Yuting Cao, S.W. Wang, Exponential synchronization of switched neural networks with mixed time-varying delays via static/dynamic event-triggering rules. IEEE Trans. Neural Netw. Learn. Syst. 8(2020), 338–347 (2020). https://doi.org/10.1109/ACCESS.2019.2955939

    Article  Google Scholar 

  54. X. Zhang, Q. Kang, J. Cheng, X. Wang, A novel hybrid algorithm based on biogeography-based optimization and Grey Wolf optimizer. Appl. Soft Comput. J. 67, 197–214 (2018). https://doi.org/10.1016/j.asoc.2018.02.049

    Article  Google Scholar 

  55. G. Zhu, S. Kwong, Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl. Math. Comput. 217(7), 3166–3173 (2010). https://doi.org/10.1016/j.amc.2010.08.049

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SC contributed to data curation, visualization, investigation, and writing—original draft. MS contributed to writing—review & editing, supervision. AKA contributed to writing—review & editing, supervision.

Corresponding author

Correspondence to Sumika Chauhan.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Data Availability

The input dataset is publicly available and detailed output data are given in the manuscript.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, S., Singh, M. & Aggarwal, A.K. Design of a Two-Channel Quadrature Mirror Filter Bank Through a Diversity-Driven Multi-Parent Evolutionary Algorithm. Circuits Syst Signal Process 40, 3374–3394 (2021). https://doi.org/10.1007/s00034-020-01625-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01625-1

Keywords

Navigation