Skip to main content
Log in

A Novel Closed-Form Estimator for AOA Target Localization Without Prior Knowledge of Noise Variances

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper addresses the problem of target localization using angle-of-arrival (AOA) measurements when the prior information of the AOA measurement noise variance is unavailable. At first, a maximum likelihood estimator (MLE) and the Cramér–Rao lower bound are derived for the case where the unknown noise variance is a function of the target-to-sensor distance. Then, a novel estimator is proposed to obtain a closed-form solution without the knowledge of noise variance. The proposed estimator can efficiently improve the localization performance by fully exploiting the desirable advantages of the instrumental variable (IV) method and the set of generalized pseudolinear equation. The simulation results show the superior performance of the proposed estimator compared with the MLE, the IV estimator and the pseudolinear estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. L. Badriasl, S. Arulampalam, A. Finn, A novel batch Bayesian WIV estimator for three-dimensional TMA using bearing and elevation measurements. IEEE Trans. Signal Process. 66(4), 1023–1036 (2018)

    Article  MathSciNet  Google Scholar 

  2. R.J. Bowden, D.A. Turkington, Instrumental Variables (Cambridge Univ. Press, New York, 1984)

    MATH  Google Scholar 

  3. K. Doğançay, Bias compensation for the bearings-only pseudolinear target track estimator. IEEE Trans. Signal Process. 54(1), 59–68 (2006)

    Article  Google Scholar 

  4. K. Doğançay, Passive emitter localization using weighted instrumental variables. Signal Process. 84, 487–497 (2004)

    Article  Google Scholar 

  5. K. Doğançay, Bearings-only target localization using total least squares. Signal Process. 85, 1695–1710 (2005)

    Article  Google Scholar 

  6. W.H. Foy, Position-location solutions by Taylor-series estimation. IEEE Trans. Aerosp. Electron. Syst. 2, 187–194 (1976)

    Article  Google Scholar 

  7. S. Haykin, Adaptive Filter Theory, 3rd edn. (Prentice-Hall, Englewood Cliffs, 1996)

    MATH  Google Scholar 

  8. B. Huang, L. Xie, Z. Yang, TDOA-based source localization with distance-dependent noises. IEEE Trans. Wirel. Commun. 14(1), 468–480 (2015)

    Article  Google Scholar 

  9. S.M. Kay, Fundamentals of Statistical Signal Processing (Prentice Hall PTR, Upper Saddle River, NJ, 1993)

    MATH  Google Scholar 

  10. M.G. Kendall, A. Stuart, The Advanced Theory of Statistics, vol. 2 (Griffin, London, 1961)

    MATH  Google Scholar 

  11. Y. Liang, Yingmin Jia, Constrained optimal placements of heterogeneous range/bearing/RSS sensor networks for source localization with distance-dependent noise. IEEE Geosci. Remote Sens. Lett. 13(11), 1611–1615 (2016)

    Article  Google Scholar 

  12. A.G. Lingren, K.F. Gong, Position and velocity estimation via bearing observations. IEEE Trans. Aerosp. Electron. Syst. 4, 564–577 (1978)

    Article  Google Scholar 

  13. L. Ljung, T. Söderström, Theory and Practice of Recursive Identification (MIT Press, Cambridge, 1983)

    MATH  Google Scholar 

  14. H. Lohrasbipeydeh, T.A. Gulliver, H. Amindavar, A minimax SDP method for energy based source localization with unknown transmit power. IEEE Wirel. Commun. Lett. 3(4), 433–436 (2014)

    Article  Google Scholar 

  15. S. Nardone, A. Lindgren, K. Gong, Fundamental properties and performance of conventional bearings-only target motion analysis. IEEE Trans. Autom. Control 29(9), 775–787 (1984)

    Article  Google Scholar 

  16. J.A. Nelder, R. Mead, A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

    Article  MathSciNet  Google Scholar 

  17. N.H. Nguyen, K. Doğançay, Closed-form algebraic solutions for angle-of-arrival source localization with Bayesian priors. IEEE Trans. Wirel. Commun. 18(8), 3827–3842 (2019)

    Article  Google Scholar 

  18. N.H. Nguyen, K. Doğançay, E.E. Kuruoğlu, An iteratively reweighted instrumental-variable estimator for robust 3-D AOA localization in impulsive noise. IEEE Trans. Signal Process. 67(18), 6524–6535 (2019)

    Article  MathSciNet  Google Scholar 

  19. F. Pang, K. Doğançay, N.H. Nguyen, Q. Zhang, AOA pseudolinear target motion analysis in the presence of sensor location errors. IEEE Trans. Signal Process. 68, 3385–3399 (2020)

    Article  MathSciNet  Google Scholar 

  20. P. Stoica, A. Nehorai, MUSIC, maximum likelihood, and Cramer-Rao bound. IEEE Trans. Acoust. Speech Signal process. 37(5), 720–741 (1989)

    Article  MathSciNet  Google Scholar 

  21. P. Stoica, A. Nehorai, MUSIC, maximum likelihood, and Cramer-Rao bound: further results and comparisons. IEEE Trans. Acoust. Speech Signal process. 38(12), 2140–2150 (1990)

    Article  Google Scholar 

  22. D.J. Torrieri, Statistical theory of passive location systems. IEEE trans. Aerosp. Electron. Syst. 2, 183–198 (1984)

    Article  Google Scholar 

  23. F.E. Vonesh, H. Wang, D. Majumdar, Generalized least squares, Taylor series linearization, and Fisher’s scoring in multivariate nonlinear regression. J. Am. Statist. Assoc. 96, 282–291 (2001)

    Article  MathSciNet  Google Scholar 

  24. Y. Wang, K.C. Ho, an asymptotically efficient estimator in closed-form for 3-D AOA localization using a sensor network. IEEE Trans. Wirel. Commun. 14(12), 6524–6535 (2015)

    Article  Google Scholar 

  25. Y.J. Zhang, G.Z. Xu, Bearings-only target motion analysis via instrumental variable estimation. IEEE Trans. Signal Process. 58(11), 5523–5533 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants 61801394, 61901467, 71801221, and by Research project of Xi’an Polytechnic University under Grant 107020495.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feifei Pang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, F., Wen, X. A Novel Closed-Form Estimator for AOA Target Localization Without Prior Knowledge of Noise Variances. Circuits Syst Signal Process 40, 3573–3591 (2021). https://doi.org/10.1007/s00034-020-01624-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01624-2

Keywords

Navigation