Skip to main content
Log in

New ISS Result for Lipschitz Nonlinear Interfered Digital Filters Under Various Concatenations of Quantization and Overflow

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper establishes a new input-to-state stability (ISS) criterion for Lipschitz nonlinear discrete systems with external disturbance and finite register length nonlinearities. The finite register length nonlinearities comprise of different concatenations of quantization and overflow nonlinearities commonly produced in practice during the hardware realization of the discrete systems. The new ISS criterion can be utilized to affirm the diminishing consequence of external disturbance and to ensure whether the nonlinear system with zero disturbance is asymptotically stable. The utility of the criterion is demonstrated with the help of several examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. N. Agarwal, H. Kar, An improved criterion for the global asymptotic stability of fixed-point state-space digital filters with combinations of quantization and overflow. Digit. Signal Process. 28(5), 136–143 (2014)

    Google Scholar 

  2. S. Ahmad, M. Rehan, On observer-based control of one-sided Lipschitz systems. J. Frankl. Inst. 353(4), 903–916 (2016)

    MathSciNet  MATH  Google Scholar 

  3. C.K. Ahn, Two new criteria for the realization of interfered digital filters utilizing saturation overflow nonlinearity. Signal Process. 95(2), 171–176 (2014)

    Google Scholar 

  4. C.K. Ahn, P. Shi, Generalized dissipativity analysis of digital filters with finite-wordlength arithmetic. IEEE Trans. Circuits Syst. II 63(4), 386–390 (2016)

    Google Scholar 

  5. C.K. Ahn, P. Shi, M.V. Basin, Two-dimensional dissipative control and filtering for Roesser model. IEEE Trans. Autom. Control 60(7), 1745–1759 (2015)

    MathSciNet  MATH  Google Scholar 

  6. C.K. Ahn, P. Shi, H.R. Karimi, Novel results on generalized dissipativity of 2-D digital filters. IEEE Trans. Circuits Syst. II 63(9), 893–897 (2016)

    Google Scholar 

  7. C.K. Ahn, L. Wu, P. Shi, Stochastic stability analysis for 2-D Roesser systems with multiplicative noise. Automatica 69(7), 356–363 (2016)

    MathSciNet  MATH  Google Scholar 

  8. M.U. Amjad, M. Rehan, M. Tufail, C.K. Ahn, H.U. Rashid, Stability analysis of nonlinear digital systems under hardware overflow constraint for dealing with finite word-length effects of digital technologies. Signal Process. 140(11), 139–148 (2017)

    Google Scholar 

  9. A. Antoniou, Digital Signal Processing (McGraw-Hill, Toronto, 2006)

    Google Scholar 

  10. L.A. Aranda, P. Reviriego, J.A. Maestrro, Error detection technique for a median filter. IEEE Trans. Nucl. Sci. 64(8), 2219–2226 (2017)

    Google Scholar 

  11. P.H. Bauer, E.I. Jury, A stability analysis of two-dimensional nonlinear digital state-space filters. IEEE Trans. Acoust. Speech Signal Process. 38(9), 1578–1586 (1990)

    MATH  Google Scholar 

  12. B.W. Bomar, On the design of second-order state-space digital filter sections. IEEE Trans. Circuits Syst. 36(4), 542–552 (1989)

    MathSciNet  Google Scholar 

  13. T. Bose, Asymptotic stability of two-dimensional digital filters under quantization. IEEE Trans. Signal Process. 42(5), 1172–1177 (1994)

    Google Scholar 

  14. T. Bose, D.P. Brown, Limit cycles due to roundoff in state-space digital filters. IEEE Trans. Acoust. Speech Signal Process. 38(8), 1460–1462 (1990)

    Google Scholar 

  15. T. Bose, M.Q. Chen, Stability of digital filters implemented with two’s complement truncation quantization. IEEE Trans. Signal Process. 40(1), 24–31 (1992)

    MATH  Google Scholar 

  16. S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory (SIAM, Philadelphia, 1994)

    MATH  Google Scholar 

  17. H. J. Butterweck, J. H. F. Ritzerfeld, M. J. Werter, Finite wordlength effects in digital filters: a review. EUT report 88-E-205 (Eindhoven University of Technology, Eindhoven, The Netherlands, 1988)

  18. T.F. Chan, S. Osher, J. Shen, The digital TV filter and nonlinear denoising. IEEE Trans. Image Process. 10(2), 231–241 (2001)

    MATH  Google Scholar 

  19. Y.C. Chu, K. Glover, Bounds of the induced norm and model reduction errors for systems with repeated scalar nonlinearities. IEEE Trans. Autom. Control 44(3), 471–483 (1999)

    MathSciNet  MATH  Google Scholar 

  20. T.A.C.M. Classen, W.F.G. Mecklenbrauker, J.B.H. Peek, Second-order digital filter with only one magnitude-truncation quantiser and having practically no limit cycles. Electron. Lett. 9(22), 531–532 (1973)

    Google Scholar 

  21. T.A.C.M. Classen, W.F.G. Mecklenbrauker, J.B.H. Peek, Effects of quantization and overflow in recursive digital filters. IEEE Trans. Acoust. Speech Signal Process. 24(6), 517–529 (1976)

    MathSciNet  Google Scholar 

  22. R. Coulon, J. Dumazert, V. Kondrasovs, S. Normand, Implementation of a nonlinear filter for online nuclear counting. Radiat. Meas. 87(4), 13–23 (2016)

    Google Scholar 

  23. C.E. de Souza, Robust H filtering for a class of discrete-time Lipschitz nonlinear systems. Automatica 103(5), 69–80 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Diksha, P. Kokil, H. Kar, Criterion for the limit cycle free state-space digital filters with external disturbances and quantization/overflow nonlinearities. Eng. Comput. 33(1), 64–73 (2016)

    Google Scholar 

  25. K.T. Erickson, A.N. Michel, Stability analysis of fixed-point digital filters using computer generated Lyapunov functions-Part I: direct form and coupled form filters. IEEE Trans. Circuits Syst. 32(2), 113–132 (1985)

    MATH  Google Scholar 

  26. P. Gahinet, A. Nemirovski, A.J. Laub, M. Chilali, LMI Control Toolbox For Use with MATLAB (The MathWorks Inc., Natick, 1995)

    Google Scholar 

  27. Z.P. Jiang, Y. Wang, Input-to-state stability for discrete-time nonlinear systems. Automatica 37(6), 857–869 (2001)

    MathSciNet  MATH  Google Scholar 

  28. H. Kar, Asymptotic stability of fixed-point state-space digital filters with combinations of quantization and overflow nonlinearities. Signal Process. 91(11), 2667–2670 (2011)

    MATH  Google Scholar 

  29. H. Kar, V. Singh, Stability analysis of 1-D and 2-D fixed-point state-space digital filters using any combination of overflow and quantization nonlinearities. IEEE Trans. Signal Process. 49(5), 1097–1105 (2001)

    Google Scholar 

  30. H. Kar, V. Singh, Elimination of overflow oscillations in fixed-point state-space digital filters with saturation arithmetic: an LMI approach. IEEE Trans. Circuits Syst. II 51(1), 40–42 (2004)

    Google Scholar 

  31. P. Kokil, H. Kar, An improved criterion for the global asymptotic stability of fixed-point state-space digital filters with saturation arithmetic. Digit. Signal Process. 22(6), 1063–1067 (2012)

    MathSciNet  Google Scholar 

  32. M.K. Kumar, H. Kar, ISS criterion for the realization of fixed-point state-space digital filters with saturation arithmetic and external interference. Circuits Syst. Signal Process. 37(12), 5664–5679 (2018)

    MathSciNet  Google Scholar 

  33. M.K. Kumar, P. Kokil, H. Kar, A new realizability condition for fixed-point state-space interfered digital filters using any combination of overflow and quantization nonlinearities. Circuits Syst. Signal Process. 36(8), 3289–3302 (2017)

    MATH  Google Scholar 

  34. M.K. Kumar, P. Kokil, H. Kar, Novel ISS criteria for digital filters using generalized overflow nonlinearities and external interference. Trans. Inst. Meas. Control 41(1), 156–164 (2019)

    Google Scholar 

  35. L.J. Leclerc, P.H. Bauer, New criteria for asymptotic stability of one- and multidimensional state-space digital filters in fixed-point arithmetic. IEEE Trans. Signal Process. 42(1), 46–53 (1994)

    Google Scholar 

  36. T. Li, Q. Zhao, J. Lam, Z. Feng, Multi-bound-dependent stability criterion for digital filters with overflow arithmetics and time delay. IEEE Trans. Circuits Syst. II 61(1), 31–35 (2014)

    Google Scholar 

  37. D. Liu, A.N. Michel, Asymptotic stability of discrete-time systems with saturation nonlinearities with applications to digital filters. IEEE Trans. Circuits Syst. I 39(10), 798–807 (1992)

    MATH  Google Scholar 

  38. J. Lofberg, YALMIP: a toolbox for modeling and optimization in MATLAB, in International Symposium on CACSD, 2004. Proceedings of the 2004 (IEEE, 2004), pp. 284–289

  39. J. Monteiro, R.V. Leuken, Integrated Circuit and System Design: Power and Timing Modeling, Optimization and Simulation (Springer, Berlin, 2010)

    Google Scholar 

  40. P. Rani, P. Kokil, H. Kar, New criterion for l2l stability of interfered fixed-point state-space digital filters with quantization/overflow nonlinearities. Circuits Syst. Signal Process. 38(1), 407–424 (2019)

    Google Scholar 

  41. J.H.F. Ritzerfeld, Noise gain expressions for low noise second-order digital filter structures. IEEE Trans. Circuits Syst. II 52(4), 223–227 (2005)

    Google Scholar 

  42. D. Schlichtharle, Digital Filters: Basics and Design (Springer, Berlin, 2000)

    MATH  Google Scholar 

  43. A. Shams, M. Rehan, M. Tufail, C.K. Ahn, W. Ahmed, Local stability analysis and H performance for Lipschitz digital filters with saturation nonlinearity and external interferences. Signal Process. 153(12), 101–108 (2018)

    Google Scholar 

  44. E.D. Sontag, Smooth stabilization implies coprime factorization. IEEE Trans. Autom. Control 34(4), 435–443 (1989)

    MathSciNet  MATH  Google Scholar 

  45. E.D. Sontag, Input to State Stability: Basic Concepts and Results (Springer, Berlin, 2008)

    MATH  Google Scholar 

  46. Y. Tsividis, Mixed Analog-Digital VLSI Devices and Technology (World Scientific Publishing, Singapore, 2002)

    Google Scholar 

  47. S. Wu, R. Li, X. Liu, L. Yang, M. Zhu, Experimental study of thin wall milling chatter stability nonlinear criterion, in International Conference on Digital Enterprise Technology (DET), 2016. Procedea CIRP 56, (2016), pp. 422–427

  48. W. Xia, W.X. Zheng, S. Xu, Extended dissipativity analysis of digital filters with time delay and Markovian jumping parameters. Signal Process. 152(11), 247–254 (2018)

    Google Scholar 

  49. W. Xia, W.X. Zheng, S. Xu, Realizability condition for digital filters with time delay using generalized overflow arithmetic. IEEE Trans. Circuits Syst. II 66(1), 141–145 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janmejaya Rout.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rout, J., Kar, H. New ISS Result for Lipschitz Nonlinear Interfered Digital Filters Under Various Concatenations of Quantization and Overflow. Circuits Syst Signal Process 40, 1852–1867 (2021). https://doi.org/10.1007/s00034-020-01561-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01561-0

Keywords

Navigation