Skip to main content
Log in

FPGA Implementation of Modified Recursive Box Filter-Based Fast Bilateral Filter for Image Denoising

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Bilateral filter (BF) is a type of edge-preserving smoother that is widely utilized in most image processing, computational photography, and computer vision applications. This article presents FPGA implementation of a modified recursive box filter (MRBF)-based fast BF (FBF) architecture for reducing computational complexity, area, and power. In addition, implementation of MRBF uses a modified carry select adder using quantum-dot cellular automata technology that offers lower area, less power consumption, and less delay. Furthermore, as an application, an investigation of image denoising with the proposed MRBF-FBF is also performed. Extensive simulation and hardware results disclose that the proposed FPGA implementation of MRBF-FBF outperforms the conventional filtering techniques in terms of quality assessment of the denoised image, such as peak signal-to-noise ratio and structural similarity index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets analyzed during the current study are available in the http://imageprocessingplace.com/root_files_V3/image_databases.htm.

References

  1. G. Arnebäck, C. Westin, Improving Deriche-style recursive gaussian filters. J Math Imaging Vis 26, 293–299 (2006). https://doi.org/10.1007/s10851-006-8464-z

    Article  MathSciNet  Google Scholar 

  2. S. Asano, T. Maruyama, Y. Yamaguchi, Performance comparison of FPGA, GPU and CPU in image processing. In: International Conference on Field Programmable Logic and Applications, Prague, Czech Republic, pp. 126–131. IEEE (2009)

  3. D.G. Bailey, Design for Embedded Image Processing on FPGAs (Wiley, New York, 2011)

    Book  Google Scholar 

  4. M. Balali, A. Rezai, H. Balali, F. Rabiei, S. Emadi, Towards coplanar quantum-dot cellular automata adders based on efficient three-input XOR gate. Res. Phys. 7, 1389–1395 (2017). https://doi.org/10.1016/j.rinp.2017.04.005

    Article  Google Scholar 

  5. G.U. Bhargava, S.V. Gangadharan, An effective method for image denoising using nonlocal means and statistics based guided filter in non-subsampled contourlet domain. Int. J. Intell. Eng. Syst. 12(3), 76–87 (2019). https://doi.org/10.22266/ijies2019.0630.09

    Article  Google Scholar 

  6. A. Buades, B. Coll, J.M. Morel, A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005). https://doi.org/10.1137/040616024

    Article  MathSciNet  MATH  Google Scholar 

  7. K.N. Chaudhury, S.D. Dabhade, Fast and provably accurate bilateral filtering. IEEE Trans. Image Process. 25(6), 2519–2528 (2016). https://doi.org/10.1109/tip.2016.2548363

    Article  MathSciNet  MATH  Google Scholar 

  8. K.N. Chaudhury, D. Sage, M. Unser, Fast $O(1)$ bilateral filtering using trigonometric range kernels. IEEE Trans. Image Process. 20(12), 3376–3382 (2011). https://doi.org/10.1109/tip.2011.2159234

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Crookes, K. Benkrid, A. Bouridane, K. Alotaibi, A. Benkrid, Design and implementation of a high level programming environment for FPGA-based image processing. IEE Proc. Vision Image Signal Process. 147(4), 377–384 (2000). https://doi.org/10.1049/ip-vis:20000579

    Article  Google Scholar 

  10. S.D. Dabhade, G.N. Rathna, K.N. Chaudhury, A reconfigurable and scalable architecture for bilateral filtering. IEEE Trans. Ind. Electron. 65(2), 1459–1469 (2018). https://doi.org/10.1109/tie.2017.2726960

    Article  Google Scholar 

  11. J.C. Das, D. De, Novel low power reversible binary incrementer design using quantum-dot cellular automata. Microprocess. Microsyst. 42, 10–23 (2016). https://doi.org/10.1016/j.micpro.2015.12.004

    Article  Google Scholar 

  12. D. De, J.C. Das, Design of novel carry save adder using quantum dot-cellular automata. J. Comput. Sci. 22, 54–68 (2017). https://doi.org/10.1016/j.jocs.2017.08.019

    Article  Google Scholar 

  13. F. Durand, J. Dorsey, Fast bilateral filtering for the display of high dynamic-range images. ACM Trans. Graph. 21(3), 257–266 (2002)

    Article  Google Scholar 

  14. H. Dutta, F. Hannig, J. Teich, B. Heigl, H. Hornegger, A design methodology for hardware acceleration of adaptive filter algorithms in image processing. In: IEEE 17th International Conference on Application—Title Suppressed Due to Excessive Length 17 Specific Systems, Architectures and Processors (ASAP’06), Steamboat Springs, CO, USA, IEEE, pp. 331–340. IEEE (2006)

  15. A. Gabiger-Rose, M. Kube, R. Weigel, R. Rose, An FPGA-based fully synchronized design of a bilateral filter for real-time image denoising. IEEE Trans. Ind. Electron. 61(8), 4093–4104 (2014). https://doi.org/10.1109/tie.2013.2284133

    Article  Google Scholar 

  16. Gonzalez: Image Databases (2018). http://imageprocessingplace.com/root_files_V3/image_databases.htm

  17. K. He, J. Sun, X. Tang, Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013)

    Article  Google Scholar 

  18. S.Y. Jung, Y.J. Chyung, P.W. Kim, Kernel design for real-time denoising implementation in low-resolution images. J. Real Time Image Proc. 16(1), 31–47 (2019). https://doi.org/10.1007/s11554-017-0721-4

    Article  Google Scholar 

  19. P.M. Kumar, Satellite image denoising using locally spayed and optimized center pixel weights. Int. J. Electr. Comput. Eng. 4(5), 751–757 (2014). https://doi.org/10.11591/ijece.v4i5.6624

    Article  Google Scholar 

  20. J. Maharaj, S. Muthurathinam, Effective RCA design using quantum dot cellular automata. Microprocess Microsyst (2020). https://doi.org/10.1016/j.micpro.2019.102964

    Article  Google Scholar 

  21. S. Mcbader, P. Lee, An FPGA implementation of a flexible, parallel image processing architecture suitable for embedded vision systems. In: Proceeding International Parallel and Distributed Processing Symposium. IEEE (2003). https://doi.org/10.1109/ipdps.2003.1213415

  22. P. Milanfar, A tour of modern image filtering: new insights and methods, both practical and theoretical. IEEE Signal Process. Mag. 30(1), 106–128 (2012). https://doi.org/10.1109/msp.2011.2179329

    Article  Google Scholar 

  23. E. Monmasson, M.N. Cirstea, FPGA Design methodology for industrial control systems—a review. IEEE Trans. Ind. Electron. 54(4), 1824–1842 (2007). https://doi.org/10.1109/tie.2007.898281

    Article  Google Scholar 

  24. D. Mukherjee, S. Mukhopadhyay, Fast hardware architecture for fixed-point 2D Gaussian filter. AEU Int. J. Electron. Commun. 105, 98–105 (2019). https://doi.org/10.1016/j.aeue.2019.03.020

    Article  Google Scholar 

  25. R.R. Nair, E. David, S. Rajagopal, A robust anisotropic diffusion filter with low arithmetic complexity for images. EURASIP J. Image Video Process. (2019). https://doi.org/10.1186/s13640-019-0444-5

    Article  Google Scholar 

  26. S. Paris, P. Kornprobst, J. Tumblin, F. Durand, Bilateral filtering: theory and applications. In: Bilateral Filtering: Theory and Applications. Now Foundations and Trends (2009). https://doi.org/10.1561/0600000020

  27. A. Rosado-Muoz, M. Bataller-Mompeán, E. Soria-Olivas, C. Scarante, J.F. Guerrero-Martínez, FPGA implementation of an adaptive filter robust to impulsive noise: two approaches. IEEE Trans. Ind. Electron. 58(3), 860–870 (2011). https://doi.org/10.1109/tie.2009.2023641

    Article  Google Scholar 

  28. N. Safoev, J.C. Jeon, A novel controllable inverter and adder/subtractor in quantum-dot cellular automata using cell interaction based XOR gate. Microelectron. Eng. (2020). https://doi.org/10.1016/j.mee.2019.111197

    Article  Google Scholar 

  29. N. Safoev, J.C. Jeon, Design of high-performance QCA incrementer/decrementer circuit based on adder/subtractor methodology. Microprocess. Microsyst. (2020). https://doi.org/10.1016/j.micpro.2019.102927

    Article  Google Scholar 

  30. F. Salimzadeh, S.R. Heikalabad, Design of a novel reversible structure for full adder/subtractor in quantum-dot cellular automata. Phys. B Condens. Matter 556, 163–169 (2019). https://doi.org/10.1016/j.physb.2018.12.028

    Article  Google Scholar 

  31. C. Tomasi, R. Manduchi, Bilateral filtering for gray and color images. In: 6th International Conference on Computer Vision, pp. 839–846. IEEE (2002). https://doi.org/10.1109/iccv.1998.710815

  32. K. Vasanth, N. Shireesha, V.G. Sivakumar, M. Vadivel, C.N. Ravi, L. Soumya, P. Ganesan, FSM based VLSI architecture for decision-based neighbourhood referred asymmetrical trimmed variant filter. Proc. Comput. Sci. 152, 130–139 (2019). https://doi.org/10.1016/j.procs.2019.05.035

    Article  Google Scholar 

  33. T.Q. Vinh, J.H. Park, Y.C. Kim, S.H. Hong, FPGA implementation of real-time edge-preserving filter for video noise reduction. In: International Conference on Computer and Electrical Engineering, pp. 611–614. IEEE (2009). https://doi.org/10.1109/iccee.2008.61

  34. Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/tip.2003.819861

    Article  Google Scholar 

  35. Q. Yang, Recursive approximation of bilateral filter. IEEE Trans. Image Process. 24(6), 1919–1927 (2015). https://doi.org/10.1109/tip.2015.2403238

    Article  MathSciNet  MATH  Google Scholar 

  36. Q. Yang, K.H. Tan, N. Ahuja, Real-time O(1) bilateral filtering. In: IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, pp. 557–564. IEEE (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gollamandala Udaykiran Bhargava.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhargava, G.U., Gangadharan, S.V. FPGA Implementation of Modified Recursive Box Filter-Based Fast Bilateral Filter for Image Denoising. Circuits Syst Signal Process 40, 1438–1457 (2021). https://doi.org/10.1007/s00034-020-01538-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01538-z

Keywords

Navigation