Abstract
This paper presents a novel spike detection algorithm in nonstationary signals using a time–frequency (t–f) approach. The proposed algorithm exploits the direction of signal energy in the t–f domain to detect spikes in the presence of high-frequency nonstationary signals even at low signal-to-noise ratio. The performance of the proposed approach is evaluated using synthetic nonstationary signals, synthesized signals mimicking electroencephalogram (EEG) signals, manually selected segments of speech signals, and manually selected segments of real EEG signals. The statistical measures, such as hit rate and precision, are used to demonstrate that the proposed algorithm performs better than other widely used algorithms, such as the smoothed nonlinear energy detector.
This is a preview of subscription content, access via your institution.


















References
R. Anvari, M. Mohammadi, A.R. Kahoo, N.A. Khan, A.I. Abdullah, Random noise attenuation of 2d seismic data based on sparse low-rank estimation of the seismic signal. Comput. Geosci. 135, 104376 (2020). https://doi.org/10.1016/j.cageo.2019.104376
B. Boashash, P. Black, An efficient real-time implementation of the Wigner–Ville distribution. IEEE Trans. Acoust. Speech Signal Process. 35(11), 1611–1618 (1987). https://doi.org/10.1109/TASSP.1987.1165070
B. Boashash, N.A. Khan, T. Ben-Jabeur, Time–frequency features for pattern recognition using high-resolution TFDS: a tutorial review. Digit. Signal Process. 40, 1–30 (2015)
B. Boashash, S. Ouelha, An improved design of high-resolution quadratic time frequency distributions for the analysis of nonstationary multicomponent signals using directional compact kernels. IEEE Trans. Signal Process. 65(10), 2701–2713 (2017). https://doi.org/10.1109/TSP.2017.2669899
T. Borghi, R. Gusmeroli, A. Spinelli, G. Baranauskas, A simple method for efficient spike detection in multiunit recordings. J. Neurosci. Methods 163(1), 176–180 (2007). https://doi.org/10.1016/j.jneumeth.2007.02.014
R. Chandra, L.M. Optican, Detection, classification, and superposition resolution of action potentials in multiunit single-channel recordings by an on-line real-time neural network. IEEE Trans. Biomed. Eng. 44(5), 403–412 (1997). https://doi.org/10.1109/10.568916
K. Das, D. Daschakladar, P.P. Roy, A. Chatterjee, S.P. Saha, Epileptic seizure prediction by the detection of seizure waveform from the pre-ictal phase of EEG signal. Biomed. Signal Process. Control 57, 101,720 (2020). https://doi.org/10.1016/j.bspc.2019.101720
V. Filipovic, N. Nedic, V. Stojanovic, Robust identification of pneumatic servo actuators in the real situations. Forsch. Ing. 75(4), 183–196 (2011). https://doi.org/10.1007/s10010-011-0144-5
F. Franke, M. Natora, C. Boucsein, M.H.J. Munk, K. Obermayer, An online spike detection and spike classification algorithm capable of instantaneous resolution of overlapping spikes. J. Comput. Neurosci. 29(1), 127–148 (2010). https://doi.org/10.1007/s10827-009-0163-5
J. Garofolo, L. Lamel, W. Fisher, J. Fiscus, D. Pallett, N. Dahlgren, V. Zue, Timit Acoustic–Phonetic Continuous Speech Corpus (Linguistic Data Consortium, Philadelphia, 1992)
G. Gritsch, P. Ossenblok, F. Furbass, A.J. Colon, H. Perko, T. Kluge, F08 automatic spike detection in intracerebral depth electrode recordings. Clin. Neurophysiol. 129, e69 (2018). https://doi.org/10.1016/j.clinph.2018.04.171
H. Hassanpour, M. Mesbah, Boashash, B. Eeg spike detection using time–frequency signal analysis, in 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5 (2004), pp. V-421–V-424. https://doi.org/10.1109/ICASSP.2004.1327137
D. Iatsenko, P.V. McClintock, A. Stefanovska, Linear and synchrosqueezed time–frequency representations revisited: overview, standards of use, resolution, reconstruction, concentration, and algorithms. Digit. Signal Process. 42, 1–26 (2015). https://doi.org/10.1016/j.dsp.2015.03.004
M. Ihle, H. Feldwisch-Drentrup, C.A. Teixeira, A. Witon, B. Schelter, J. Timmer, A. Schulze-Bonhage, Epilepsiae—a European epilepsy database. Comput. Methods Prog. Biomed. 106(3), 127–138 (2012). https://doi.org/10.1016/j.cmpb.2010.08.011
T.Y. Jun, A.B. Jambek, U. Hashim, Performance comparison of automatic peak detection for portable signal analyser, in 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES) (2016), pp. 400–404. https://doi.org/10.1109/IECBES.2016.7843481
J.F. Kaiser, On a simple algorithm to calculate the ‘energy’ of a signal, in International Conference on Acoustics, Speech, and Signal Processing, vol. 1 (1990), pp. 381–384. https://doi.org/10.1109/ICASSP.1990.115702
N.A. Khan, S. Ali, A new feature for the classification of non-stationary signals based on the direction of signal energy in the time–frequency domain. Comput. Biol. Med. 100, 10–16 (2018). https://doi.org/10.1016/j.compbiomed.2018.06.018
N.A. Khan, S. Ali, M. Mohammadi, J. Akram, Novel direction of arrival estimation using adaptive directional spatial time–frequency distribution. Signal Process (2020). https://doi.org/10.1016/j.sigpro.2019.107342
N.A. Khan, F. Baig, S.J. Nawaz, N. Ur Rehman, S.K. Sharma, Analysis of power quality signals using an adaptive time–frequency distribution. Energies 9(11), 933 (2016)
N.A. Khan, F. Baig, S.J. Nawaz, N. Ur-Rehman, S.K. Sharma, Analysis of power quality signals using an adaptive time–frequency distribution. Energies (2016). https://doi.org/10.3390/en9110933
N.A. Khan, B. Boashash, Multi-component instantaneous frequency estimation using locally adaptive directional time frequency distributions. Int. J. Adapt. Control Signal Process. 30(3), 429–442 (2016)
N.A. Khan, M. Mohammadi, Reconstruction of non-stationary signals with missing samples using time-frequency filtering. CSSP 37(8), 3175–3190 (2018). https://doi.org/10.1007/s00034-018-0814-8
N.A. Khan, M. Mohammadi, I. Stankovic, Sparse reconstruction based on iterative TF domain filtering and viterbi based IF estimation algorithm. Signal Process (2020). https://doi.org/10.1016/j.sigpro.2019.107260
S. Kim, J. McNames, Automatic spike detection based on adaptive template matching for extracellular neural recordings. J. Neurosci. Methods 165(2), 165–174 (2007). https://doi.org/10.1016/j.jneumeth.2007.05.033
X. Liu, X. Yang, N. Zheng, Automatic extracellular spike detection with piecewise optimal morphological filter. Neurocomputing 79, 132–139 (2012). https://doi.org/10.1016/j.neucom.2011.10.016
M. Mohammadi, N.A. Khan, A.A. Pouyan, Automatic seizure detection using a highly adaptive directional time–frequency distribution. Multidimens. Syst. Signal Process. 29(4), 1661–1678 (2018). https://doi.org/10.1007/s11045-017-0522-8
M. Mohammadi, A.A. Pouyan, V. Abolghasemi, N.A. Khan, Enhancement of the spikes attributes in the time–frequency representations of real EEG signals, in 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI) (2017), pp. 0768–0772
M. Mohammadi, A.A. Pouyan, N.A. Khan, A highly adaptive directional time–frequency distribution. SIViP 10(7), 1369–1376 (2016). https://doi.org/10.1007/s11760-016-0901-x
M. Mohammadi, A.A. Pouyan, N.A. Khan, V. Abolghasemi, An improved design of adaptive directional time–frequency distributions based on the radon transform. Signal Process. 150, 85–89 (2018). https://doi.org/10.1016/j.sigpro.2018.04.004
M. Mohammadi, A.A. Pouyan, N.A. Khan, V. Abolghasemi, Locally optimized adaptive directional time–frequency distributions. Circuits Syst. Signal Process. (2018). https://doi.org/10.1007/s00034-018-0802-z
S. Mukhopadhyay, G.C. Ray, A new interpretation of nonlinear energy operator and its efficacy in spike detection. IEEE Trans. Biomed. Eng. 45(2), 180–187 (1998). https://doi.org/10.1109/10.661266
N. Nedic, D. Prsic, L. Dubonjic, V. Stojanovic, V. Djordjevic, Optimal cascade hydraulic control for a parallel robot platform by pso. Int. J. Adv. Manuf. Technol. 72(5), 1085–1098 (2014). https://doi.org/10.1007/s00170-014-5735-5
N. Nedic, D. Prsic, C. Fragassa, V. Stojanovic, A. Pavlovic, Simulation of hydraulic check valve for forestry equipment. Int. J. Heavy Veh. Syst. 24, 260–276 (2017). https://doi.org/10.1504/IJHVS.2017.084875
Z. Nenadic, J.W. Burdick, Spike detection using the continuous wavelet transform. IEEE Trans. Biomed. Eng. 52(1), 74–87 (2005). https://doi.org/10.1109/TBME.2004.839800
K.C. Ray, A.S. Dhar, Cordic-based unified VLSI architecture for implementing window functions for real time spectral analysis. IEE Proceedings - Circuits, Devices and Systems 153(6), 539–544 (2006). https://doi.org/10.1049/ip-cds:20050280
M.L. Scheuer, A. Bagic, S.B. Wilson, Spike detection: inter-reader agreement and a statistical turing test on a large data set. Clin. Neurophysiol. 128(1), 243–250 (2017). https://doi.org/10.1016/j.clinph.2016.11.005
E.M. Schmidt, Computer separation of multi-unit neuroelectric data: a review. J. Neurosci. Methods 12(2), 95–111 (1984). https://doi.org/10.1016/0165-0270(84)90009-8
S. Shahid, J. Walker, L.S. Smith, A new spike detection algorithm for extracellular neural recordings. IEEE Trans. Biomed. Eng. 57(4), 853–866 (2010). https://doi.org/10.1109/TBME.2009.2026734
H.S. Shin, C. Lee, M. Lee, Adaptive threshold method for the peak detection of photoplethysmographic waveform. Comput. Biol. Med. 39(12), 1145–52 (2009)
L.S. Smith, N. Mtetwa, A tool for synthesizing spike trains with realistic interference. J. Neurosci. Methods 159(1), 170–180 (2007). https://doi.org/10.1016/j.jneumeth.2006.06.019
S. Stanković, L. Stanković, V. Ivanović, R. Stojanović, An architecture for the VLSI design of systems for time–frequency analysis and time-varying filtering. Ann. Des Télécommun. 57(9), 974–995 (2002). https://doi.org/10.1007/BF03005257
V. Stojanovic, V. Filipovic, Adaptive input design for identification of output error model with constrained output. Circuits Syst. Signal Process. 33(1), 97–113 (2014). https://doi.org/10.1007/s00034-013-9633-0
V. Stojanovic, N. Nedic, Robust kalman filtering for nonlinear multivariable stochastic systems in the presence of non-gaussian noise. Int. J. Robust Nonlinear Control 26(3), 445–460 (2016). https://doi.org/10.1002/rnc.3319
V. Stojanovic, N. Nedic, D. Prsic, L. Dubonjic, Optimal experiment design for identification of ARX models with constrained output in non-gaussian noise. Appl. Math. Model. 40(13), 6676–6689 (2016). https://doi.org/10.1016/j.apm.2016.02.014
D. Ventzas, N. Petrellis, Peak searching algorithms and applications, in Proceedings of the IASTED International Conference on Signal andImage Processing and Applications, SIPA 2011 (2011). https://doi.org/10.2316/P.2011.738-049
H. Wang, P. Jin, G. Liu, Automatic spikes detection in seismogram. Acta Seismol. Sin. 16(3), 348–355 (2003). https://doi.org/10.1007/s11589-003-0039-0
G. Xu, J. Wang, Q. Zhang, S. Zhang, J. Zhu, A spike detection method in eeg based on improved morphological filter. Comput. Biol. Med. 37(11), 1647–1652 (2007). https://doi.org/10.1016/j.compbiomed.2007.03.005
Y. Yang, Z. Peng, W. Zhang, G. Meng, Parameterised time–frequency analysis methods and their engineering applications: a review of recent advances. Mech. Syst. Signal Process. 119, 182–221 (2019). https://doi.org/10.1016/j.ymssp.2018.07.039
H. Zhu, J. Dong, An r-peak detection method based on peaks of shannon energy envelope. Biomed. Signal Process. Control 8(5), 466–474 (2013). https://doi.org/10.1016/j.bspc.2013.01.001
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mohammadi, M., Ali Khan, N., Hassanpour, H. et al. Spike Detection Based on the Adaptive Time–Frequency Analysis. Circuits Syst Signal Process 39, 5656–5680 (2020). https://doi.org/10.1007/s00034-020-01427-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-020-01427-5