Skip to main content
Log in

Generalized Fractional Ambiguity Function and Its Applications

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The ambiguity function (AF) is an essential time-frequency analysis tool to analyze the radar waveform properties in radar applications. It can be used effectively and reliably to analyze properties like the peak-to-side-lobe ratio, time delay resolution, Doppler resolution and tolerance characteristic. However, it fails to analyze higher-order chirp waveforms and is unable to estimate their parameters. To solve this problem, a generalized time-frequency transform-based generalized fractional AF (GFAF) and generalized fractional Wigner–Ville distribution (GFWVD) are proposed. GFAF is also a generalization of the Fourier transform-based ambiguity function and the fractional Fourier transform-based ambiguity function. The uncertainty principle for GFAF and GFWVD is derived. Examples are presented to demonstrate the effectiveness of GFAF in analyzing cubic chirp waveforms and estimating parameters of multicomponent cubic chirps. The superiority of GFAF is demonstrated by comparing the mean square error to Cramer–Rao lower bound and high-order ambiguity function under different input-signal-to-noise ratio conditions. The robustness is demonstrated by comparing the signal-to-noise ratio gain to that of the time domain-matched filtering and other ambiguity functions. Finally, fourth-order parameters of a real bat echolocation signal are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L.B. Almeida, The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 42(11), 3084–3091 (1994)

    Google Scholar 

  2. X. Bai, R. Tao, L.J. Liu, J. Zhao, Autofocusing of SAR images using STFRFT-based preprocessing. Electron. Lett. 48(25), 1622–1624 (2012)

    Google Scholar 

  3. S. Barbarossa, V. Petrone, Analysis of polynomial-phase signals by the integrated generalized ambiguity function. IEEE Trans. Signal Process. 45(2), 316–327 (1997)

    Google Scholar 

  4. B. Boashash, Time-Frequency Signal Analysis and Processing: A Comprehensive Reference (Academic Press, Orlando, 2015)

    Google Scholar 

  5. R. Cao, M. Li, L. Zuo, Z. Wang, Y. Lu, A new method for parameter estimation of high-order polynomial-phase signals. Sig. Process. 142, 212–222 (2018)

    Google Scholar 

  6. C. Capus, K. Brown, Short-time fractional Fourier methods for the time-frequency representation of chirp signals. J. Acoust. Soc. Am. 113(6), 3253–3263 (2003)

    Google Scholar 

  7. T.-W. Che, B.-Z. Li, T.-Z. Xu, The ambiguity function associated with the linear canonical transform. EURASIP J. Adv. Signal Process. 2012(1), 1–14 (2012)

    Google Scholar 

  8. V.C. Chen, The Micro-Doppler Effect in Radar (Artech House, Norwood, 2019)

    Google Scholar 

  9. V.C. Chen, D. Tahmoush, W.J. Miceli, Radar Micro-Doppler Signatures: Processing and Applications (Institution of Engineering and Technology, Herts, 2014)

    Google Scholar 

  10. X. Chen, Y. Huang, N. Liu, J. Guan, Y. He, Radon-fractional ambiguity function-based detection method of low-observable maneuvering target. IEEE Trans. Aerosp. Electron. Syst. 51(2), 815–833 (2015)

    Google Scholar 

  11. I.G. Cumming, F.H. Wong, Digital Processing of Synthetic Aperture Radar Data (Artech House, Norwood, 2005)

    Google Scholar 

  12. I. Djurović, M. Simeunović, Review of the quasi-maximum likelihood estimator for polynomial phase signals. Digit. Signal Proc. 72, 59–74 (2018)

    Google Scholar 

  13. I. Djurović, M. Simeunović, P. Wang, Cubic phase function: a simple solution to polynomial phase signal analysis. Sig. Process. 135, 48–66 (2017)

    Google Scholar 

  14. I. Djurovic, T. Thayaparan, L. Stankovic, SAR imaging of moving targets using polynomial Fourier transform. IET Signal Proc. 2(3), 237–246 (2008)

    Google Scholar 

  15. M. El-Mashed, O. Zahran, M.I. Dessouky, M. El-Kordy, F.A. El-Samie, Synthetic aperture radar imaging with fractional Fourier transform and channel equalization. Digit. Signal Proc. 23(1), 151–175 (2013)

    MathSciNet  Google Scholar 

  16. P. Huang, G. Liao, Z. Yang, X. Xia, J. Ma, X. Zhang, A fast SAR imaging method for ground moving target using a second-order WVD transform. IEEE Trans. Geosci. Remote Sens. 54(4), 1940–1956 (2016)

    Google Scholar 

  17. P. Huang, G. Liao, Z. Yang, X.G. Xia, J. Ma, J. Zheng, Ground maneuvering target imaging and high-order motion parameter estimation based on second-order keystone and generalized Hough-HAF transform. IEEE Trans. Geosci. Remote Sens. 55(1), 320–335 (2017)

    Google Scholar 

  18. L. Li, T. Qiu, A novel phase parameter estimation method of quadratic FM signal based on Sigmoid fractional ambiguity function in impulsive noise environment. AEU-Int. J. Electron. Commun. 93, 268–276 (2018)

    Google Scholar 

  19. L. Li, N.H. Younan, X. Shi, Joint estimation of Doppler stretch and time delay of wideband echoes for LFM pulse radar based on Sigmoid-FRFT transform under the impulsive noise environment. Electronics 8(2), 121 (2019)

    Google Scholar 

  20. X. Li, G. Bi, S. Stankovic, A.M. Zoubir, Local polynomial Fourier transform: a review on recent developments and applications. Sig. Process. 91(6), 1370–1393 (2011)

    MATH  Google Scholar 

  21. J.G. Liu, B.C. Yuan, The analysis and simulation of the detectors based on FRFT statistic performance, in 2008 Asia Simulation Conference-7th International Conference on System Simulation and Scientific Computing (2008), pp. 1543–1548

  22. S. Liu, Y. Ma, T. Shan, Segmented discrete polynomial-phase transform with coprime sampling. J. Eng. 2019(19), 5619–5621 (2019)

    Google Scholar 

  23. S. Liu, T. Shan, R. Tao, Y.D. Zhang, G. Zhang, F. Zhang, Y. Wang, Sparse discrete fractional Fourier transform and its applications. IEEE Trans. Signal Process. 62(24), 6582–6595 (2014)

    MathSciNet  MATH  Google Scholar 

  24. S. Liu, T. Shan, Y.D. Zhang, R. Tao, Y. Feng, A fast algorithm for multi-component LFM signal analysis exploiting segmented DPT and SDFrFT, in 2015 IEEE Radar Conference (RadarCon) (2015), pp. 1139–1143

  25. S. Liu, Y.D. Zhang, T. Shan, Detection of weak astronomical signals with frequency-hopping interference suppression. Digit. Signal Proc. 72, 1–8 (2018)

    MathSciNet  Google Scholar 

  26. N. Nedić, D. Pršić, C. Fragassa, V. Stojanović, A. Pavlovic, Simulation of hydraulic check valve for forestry equipment. Int. J. Heavy Veh. Syst. 24(3), 260–276 (2017)

    Google Scholar 

  27. N. Nedic, V. Stojanovic, V. Djordjevic, Optimal control of hydraulically driven parallel robot platform based on firefly algorithm. Nonlinear Dyn. 82(3), 1457–1473 (2015)

    MathSciNet  MATH  Google Scholar 

  28. X. Ning, L. Guo, X. Sha, Joint time delay and frequency offset estimation based on fractional Fourier transform, in 2012 International Conference on ICT Convergence (ICTC) (2012), pp. 318–322

  29. H.M. Ozaktas, O. Arikan, M.A. Kutay, G. Bozdagt, Digital computation of the fractional Fourier transform. IEEE Trans. Signal Process. 44(9), 2141–2150 (1996)

    Google Scholar 

  30. V. Popović, I. Djurović, L. Stanković, T. Thayaparan, M. Daković, Autofocusing of SAR images based on parameters estimated from the PHAF. Sig. Process. 90(5), 1382–1391 (2010)

    MATH  Google Scholar 

  31. T.S. Qiu, L. Li, A novel joint parameter estimation method based on fractional ambiguity function in bistatic multiple-input multiple-output radar system. Comput. Electr. Eng. 39(4), 1248–1259 (2013)

    Google Scholar 

  32. B. Ristic, B. Boashash, Comments on “The Cramer–Rao lower bounds for signals with constant amplitude and polynomial phase”. IEEE Trans. Signal Process. 46(6), 1708–1709 (1998)

    Google Scholar 

  33. B.Z.L. Rui-Feng Bai, Q.Y. Cheng, Wigner–Ville distribution associated with the linear canonical transform. J. Appl. Math. 2012, 1–14 (2012)

  34. S. Sahay, D. Pande, N. Wing, V. Gadre, P. Sohani, A novel generalized time-frequency transform inspired by the fractional Fourier transform for higher order chirps, in International Conference on Signal Processing and Communications (SPCOM) (2012), pp. 1–5

  35. S.B. Sahay, Parameter estimation of chirp signals. Ph.D. thesis, Department of Electrical Engineering, IIT Bombay, Mumbai, India (2015)

  36. S.B. Sahay, T. Meghasyam, R.K. Roy, G. Pooniwala, S. Chilamkurthy, V. Gadre, Parameter estimation of linear and quadratic chirps by employing the fractional Fourier transform and a generalized time frequency transform. Sadhana 40(4), 1049–1075 (2015)

    MathSciNet  MATH  Google Scholar 

  37. E. Sejdić, I. Djurović, L. Stanković, Fractional Fourier transform as a signal processing tool: an overview of recent developments. Sig. Process. 91(6), 1351–1369 (2011)

    MATH  Google Scholar 

  38. M. Simeunovic, I. Djurovic, CPF-HAF estimator of polynomial-phase signals. Electron. Lett. 47(17), 965–966 (2011)

    Google Scholar 

  39. M. Simeunović, I. Djurović, A method for efficient maximization of PPS estimation functions. Digit. Signal Proc. 84, 38–45 (2019)

    Google Scholar 

  40. Y.E. Song, C. Wang, P. Shi, Algorithm based on the linear canonical transform for QFM signal parameters estimation. IET Signal Proc. 10(3), 318–324 (2016)

    Google Scholar 

  41. Y.E. Song, X.Y. Zhang, C.H. Shang, H.X. Bu, X.Y. Wang, The Wigner–Ville distribution based on the linear canonical transform and its applications for QFM signal parameters estimation. J. Appl. Math. 1–8 (2014)

  42. L. Stankovic, M. Dakovic, T. Thayaparan, Time-Frequency Signal Analysis with Applications (Artech house, Norwood, 2014)

    MATH  Google Scholar 

  43. V. Stojanovic, V. Filipovic, Adaptive input design for identification of output error model with constrained output. Circuits Syst Signal Process 33(1), 97–113 (2014)

    MathSciNet  Google Scholar 

  44. V. Stojanovic, N. Nedic, A nature inspired parameter tuning approach to cascade control for hydraulically driven parallel robot platform. J. Optim. Theory Appl. 168(1), 332–347 (2016)

    MathSciNet  MATH  Google Scholar 

  45. V. Stojanovic, N. Nedic, Robust Kalman filtering for nonlinear multivariable stochastic systems in the presence of non-Gaussian noise. Int. J. Robust Nonlinear Control 26(3), 445–460 (2016)

    MathSciNet  MATH  Google Scholar 

  46. R. Tao, X.M. Li, Y.L. Li, Y. Wang, Time-delay estimation of chirp signals in the fractional Fourier domain. IEEE Trans. Signal Process. 57(7), 2852–2855 (2009)

    MathSciNet  MATH  Google Scholar 

  47. R. Tao, Y.L. Li, Y. Wang, Short-time fractional Fourier transform and its applications. IEEE Trans. Signal Process. 58(5), 2568–2580 (2010)

    MathSciNet  MATH  Google Scholar 

  48. R. Tao, Y.E. Song, Z.J. Wang, Y. Wang, Ambiguity function based on the linear canonical transform. IET Signal Proc. 6(6), 568–576 (2012)

    MathSciNet  Google Scholar 

  49. Z. Xinghao, T. Ran, D. Bing, Practical normalization methods in the digital computation of the fractional Fourier transform, in Proceedings of 7th International Conference on Signal Processing (2004), pp. 105–108

  50. Y. Yang, Z. Peng, X. Dong, W. Zhang, G. Meng, General parameterized time-frequency transform. IEEE Trans. Signal Process. 62(11), 2751–2764 (2014)

    MathSciNet  MATH  Google Scholar 

  51. Y. Yang, Z. Peng, W. Zhang, G. Meng, Parameterised time-frequency analysis methods and their engineering applications: a review of recent advances. Mech. Syst. Signal Process. 119, 182–221 (2019)

    Google Scholar 

  52. Y. Yang, W. Zhang, Z. Peng, G. Meng, Multicomponent signal analysis based on polynomial chirplet transform. IEEE Trans. Ind. Electron. 60(9), 3948–3956 (2013)

    Google Scholar 

  53. Z. Zhang, M. Luo, New integral transforms for generalizing the Wigner distribution and ambiguity function. IEEE Signal Process. Lett. 22(4), 460–464 (2015)

    Google Scholar 

  54. Z.C. Zhang, Novel Wigner distribution and ambiguity function associated with the linear canonical transform. Optik Int. J. Light Electron Opt. 127(12), 4995–5012 (2016)

    Google Scholar 

  55. J.D. Zhu, J. Li, X.D. Gao, L.B. Ye, H.Y. Dai, Adaptive threshold detection and estimation of linear frequency-modulated continuous-wave signals based on periodic fractional Fourier transform. Circuits Syst. Signal Process. 35(7), 2502–2517 (2016)

    MATH  Google Scholar 

  56. L. Zuo, M. Li, Z. Liu, L. Ma, A high-resolution time-frequency rate representation and the cross-term suppression. IEEE Trans. Signal Process. 64(10), 2463–2474 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the DRDO, Ministry of Defence, Govt. of India, for sponsorship of Peeyush Sahay, Sc ‘E’ (Ph.D. student) under the R&D scheme, at IIT Bombay. The authors would like to thank Mr. Adway Girish, Shubham Kar, Shaan Ul Haque, Parth Dodhia, and Titas Chakraborty (B.Tech, IIT Bombay) for improving the quality of the paper. The authors also wish to thank Curtis Condon, Ken White, and Al Feng of the Beckman Institute of the University of Illinois for the bat data and for permission to use it in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peeyush Sahay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahay, P., Shaik Rasheed, I.A., Kulkarni, P. et al. Generalized Fractional Ambiguity Function and Its Applications. Circuits Syst Signal Process 39, 4980–5019 (2020). https://doi.org/10.1007/s00034-020-01398-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01398-7

Keywords

Navigation