Skip to main content
Log in

Optimized Gate Diffusion Input Method-Based Reversible Magnitude Arithmetic Unit Using Non-dominated Sorting Genetic Algorithm II

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Gate diffusion input (GDI) method using a simple cell makes it possible to design low-power logic gates with reduced chip area and less complexity. In this work, a novel design of single-bit optimized reversible logic-based magnitude arithmetic unit (RMAU) circuit, using appropriate standard reversible gates with carbon nanotube (CNT) field-effect transistors (CNTFETs), based on modified-GDI (m-GDI) method for nanoscales is presented. In order to optimize the performance of the proposed circuit, and to achieve minimum power consumption and propagation delay, transistor sizes are adjusted using the non-dominated sorting genetic algorithm II (NSGA-II) in MATLAB tool. The simulation results show improvement in evaluating the figure of merits in worst-case delay and power consumption of the proposed optimized arithmetic unit, in comparison with a non-optimized RMAU circuit using a similar design method but counterpart structures. The effects of different process parameters (such as the diameter of CNTs) and voltage and temperature (PVT) variations are extensively evaluated by the Monte Carlo procedure in standard 32 nm technology utilizing the Synopsys HSPICE simulator. According to the outcomes obtained, the proposed optimized RMAU circuit is robust against PVT variations and noise-tolerable criterions, compared to those competitors with similar design in non-optimized conditions. The proposed optimized and non-optimized circuits were used in image processing as real environment assessments, and results depicted their excellent ability in being implemented in various large reversible-based applications, such as future generations of FPGA chips and CNTFET-based computers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. E. Abiri, Z. Bezareh, A. Darabi, The optimum design of RAM cell based on the modified-GDI method using non-dominated sorting genetic algorithm II (NSGA-II). J. Intell. Fuzzy Syst. 32(6), 4095–4108 (2017)

    Article  Google Scholar 

  2. E. Abiri, Z. Bezareh, A. Darabi, The Optimum Design of a Master-Slave D-Flip Flap (M/S-DFF) Based on the Modified GDI (m-GDI) Method Using Non-dominated Sorting Genetic Algorithm II (NSGA-II). 24th Iranian Conference on Electrical Engineering (ICEE) (2016), pp. 720–725

  3. E. Abiri, A. Darabi, A novel modified GDI method-based clocked M/S-TFF for future generation microprocessor chips in nano schemes. Microprocess. Microsyst. J. 60, 122–137 (2018)

    Article  Google Scholar 

  4. E. Abiri, A. Darabi, Design of low power and high read stability 8T-SRAM memory based on the modified gate diffusion input (m-GDI) in 32 nm CNTFET technology. Microelectron. J. 46(12), 1351–1363 (2015)

    Article  Google Scholar 

  5. E. Abiri, A. Darabi, A novel design of low power and high read stability ternary SRAM (T-SRAM), memory based on the modified gate diffusion input (m-GDI) method in nanotechnology. Microelectron. J. 58, 44–59 (2016)

    Article  Google Scholar 

  6. E. Abiri, A. Darabi, A. Sadeghi, Gate-diffusion input (GDI) method for designing energy-efficient circuits in analogue voltage-mode fuzzy and QCA systems. Microelectron. J. 87, 81–100 (2019)

    Article  Google Scholar 

  7. E. Abiri, A. Darabi, S. Salem, Design of multiple-valued logic gates using gate-diffusion input for image processing applications. Comput. Electric. Eng. J. 69, 142–157 (2018)

    Article  Google Scholar 

  8. E. Abiri, A. Darabi, Reversible logic-based magnitude comparator (RMC) circuit using modified-GDI technique for motion detection applications in image processing. Microprocess. Microsyst. J. 72, 102928 (2020)

    Article  Google Scholar 

  9. M. Ahmadinejad, M.H. Moaiyeri, F. Sabetzadeh, Energy and area efficient imprecise compressors for approximate multiplication at nanoscale. AEU Int. J. Electron. Commun. 110, 1434–8411 (2019)

    Article  Google Scholar 

  10. D. Akinwande, J. Liang, S. Chong, Y. Nishi, H.S. Wong, Analytical ballistic theory of carbon nanotube transistors: experimental validation, device physics, parameter extraction, and performance projection. J. Appl. Phys. 104(12), 124514 (2008)

    Article  Google Scholar 

  11. D. Akinwande, Y. Nishi, H.-S. Philip Wong, An analytical derivation of the density of states, effective mass, and carrier density for achiral carbon nanotubes. IEEE Trans. Electron. Dev. 55(1), 289–297 (2008)

    Article  Google Scholar 

  12. M. Ali, M. Ahmed, M. Chrzanowska-Jeske, in Proceedings of the 16th International Conference on Nanotechnology. Fast and accurate evaluation of delay in CNFET circuits (2016), pp. 659–662

  13. Arizona State University, Tucson, AZ, USA. Predictive Technology Models. http://www.eas.asu.edu/~ptm (2019)

  14. C.H. Bennett, Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)

    Article  MathSciNet  Google Scholar 

  15. Y. Chang, Z. Bouzarkouna, D. Devegowda, Multi-objective optimization for rapid and robust optimal oilfield development under geological uncertainty. Comput. Geosci. 19, 933 (2015)

    Article  Google Scholar 

  16. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  17. K. Deb, M. Abouhawwash, An optimality theory-based proximity measure for set-based multiobjective optimization. IEEE Trans. Evolut. Comput. 20(4), 515–528 (2016)

    Article  Google Scholar 

  18. J. Deng, Device Modeling and Circuit Performance Evaluation For Nanoscale Devices: Silicon Technology Beyond 45 nm Node and Carbon Nanotube Field Effect Transistors. Ph.D. Dissertation, Stanford University, Stanford, 2007

  19. V. Dokania, R. Verma, M. Guduri, A. Islam, Design of 10T full adder cell for ultralow-power applications. Ain Shams Eng. J. 9(4), 2363–2372 (2018)

    Article  Google Scholar 

  20. L. Gonzalez, J. Periuax, G. Bugeda, D. Lee, Design optimization using advanced artificial intelligent system coupled to hybrid-game strategies. In: Proceedings of the 3rd International Workshop on Artificial Intelligence in Science and Technology (AISAT), pp. 1–10 (2009)

  21. H. Hashempour, F. Lombardi, Device model For ballistic CNFETs using the first conducting band. IEEE Des. Test Comput. 25, 178–186 (2008)

    Article  Google Scholar 

  22. A.L. Jaimes, C.A. Coellooello, An introduction to multi objective evolutionary algorithms and some of their potential uses in biology. Appl. Comput. Intell. Biol. Part Stud. Comput. Intell. Book Ser. 122, 79–102 (2008)

    Google Scholar 

  23. P. Khatter, N. Pandey, K. Gupta, An Arithmetic and Logical Unit using Reversible Gates. International Conference on Computing, Power and Communication Technologies (GUCON) (2018), pp. 476–480

  24. M.H. Moaiyeri, K. Navi, O. Hashemipour, Design and evaluation of CNFET-based quaternary circuits. Circuits Syst. Signal Process. 31(5), 1631–1652 (2012)

    Article  MathSciNet  Google Scholar 

  25. M.H. Moaiyeri, A. Rahi, F. Sharifi, K. Navi, Design and evaluation of energy efficient carbon nanotube FET-based quaternary minimum and maximum circuits. J. Appl. Res. Technol. 15(3), 233–241 (2017)

    Article  Google Scholar 

  26. A. Morgenshtein, A. Fish, I.A. Wagner, Gate-diffusion input (GDI): a power-efficient method for digital combinatorial circuits. IEEE Trans. VLSI Syst. 10, 566–581 (2002)

    Article  Google Scholar 

  27. H. Naseri, S. Timarchi, Low-power and fast full adder by exploring new XOR and XNOR gates. IEEE Trans. VLSI Syst. 26(8), 1481–1493 (2018)

    Article  Google Scholar 

  28. V. Pareto, Cours D’Economie Politique, vol. I, II (F. Rouge, Lausanne, 1896)

    Google Scholar 

  29. B.C. Paul, S. Fujita, M. Okajima, T.H. Lee, H.S.P. Wong, Y. Nishi, Impact of a process variation on nanowire and nanotube device performance. IEEE Trans. Electron. Dev. 54(9), 2369–2376 (2007)

    Article  Google Scholar 

  30. H.V. Ravish Aradhya, B.V. Praveen Kumar, K.N. Muralidhara, Design of control unit for low power AU using reversible logic. Int. Conf. Commun. Technol. Syst. Des. 30, 631–638 (2012)

    Google Scholar 

  31. Y. Safaei Mehrabani, M. Eshghi, Noise and process variation tolerant, low-power, high-speed, and low-energy full adders in CNFET technology. IEEE Trans. VLSI Syst. 24(11), 3268–3281 (2016)

    Article  Google Scholar 

  32. M.S. Sankhwar, R. Khatri, Design of high speed low power reversible logic adder using HNG gate. Int. J. Eng. Res. Appl. 4(1), 152–159 (2014)

    Google Scholar 

  33. T.N. Sasamal, A. Mohan, Efficient design of reversible logic ALU using coplanar quantum-dot cellular automata. J. Circuits Syst. Comput. 27(2), 1850021 (2018)

    Article  Google Scholar 

  34. H. Shahidipour, A. Ahmadi, K. Maharatna, in Proceedings of 12th International Symposium on Integrated Circuits. Effect of variability in SWCNT-based logic gates (2010), pp. 252–255

  35. M. Shams, M. Haghparast, K. Navi, Novel reversible multiplier circuit in nanotechnology. World Appl. Sci. J 3, 806–810 (2008)

    Google Scholar 

  36. V. Shukla, O.P. Singh, G.R. Mishra, R.K. Tiwari, Reversible realization of N-bit arithmetic circuit for low power loss ALU applications. Proc. Comput. Sci. 125, 847–854 (2018)

    Article  Google Scholar 

  37. Stanford University CNTFET Model. http://nano.stanford.edu/model.php? (2019)

  38. N. Srinivas, K. Deb, Multiobjective optimization using non-dominated sorting in genetic algorithms. Evolut. Comput. 2(3), 221–248 (1994)

    Article  Google Scholar 

  39. K.B.K. Teo, R.G. Lacerda, M.H. Yang, A.S. Teh, L.A.W. Robinson, S.H. Dalal, N.L. Rupesinghe, M. Chhowalla, S.B. Lee, D.A. Jefferson, D.G. Hasko, G.A.J. Amaratunga, W.L. Milne, P. Legagneux, L. Gangloff, E. Minoux, J.P. Schnell, D. Pribat, Carbon nanotube technology for solid state and vacuum electronics. IEEE Proc. Circuits Dev. Syst. 151(5), 443–451 (2004)

    Article  Google Scholar 

  40. A. TorkzadehMahani, P. Keshavarzian, A novel energy-efficient and high speed full adder using CNTFET. Microelectron. J. 61, 79–88 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolreza Darabi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abiri, E., Darabi, A., Salehi, M.R. et al. Optimized Gate Diffusion Input Method-Based Reversible Magnitude Arithmetic Unit Using Non-dominated Sorting Genetic Algorithm II. Circuits Syst Signal Process 39, 4516–4551 (2020). https://doi.org/10.1007/s00034-020-01382-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01382-1

Keywords

Navigation