Skip to main content
Log in

Step Response-Based Identification of Fractional Order Time Delay Models

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

An identification method for fractional order models with time delay is presented. The proposed method, based on the output error optimization, simultaneously estimates model orders, coefficients and time delay from a single noisy step response. Analytical expressions for logarithmic derivatives of the step input are derived to evaluate the Jacobian and the Hessian required for the Newton’s algorithm for optimization. A simplified initialization procedure is also outlined that assumes an integral initial order and uses estimated coefficients as the initial guess. Simulation results are presented to demonstrate the efficacy of the proposed approach. Convergence of the Newton’s method and the Gauss–Newton scheme are also studied in simulation. Identification results from noisy step response data for time delay models with different structures are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. Ahmed, Parameter and delay estimation of fractional order models from step response, in 9th IFAC Symposium on Advanced Control of Chemical Processes, Whistler, BC, Canada (2015), pp. 942–947

  2. S. Ahmed, B. Huang, S.L. Shah, Parameter and delay estimation of continuous-time models using a linear filter. J. Process Control 16(4), 323–331 (2006)

    Google Scholar 

  3. M. Aoun, R. Malti, F. Levron, A. Oustaloup, Synthesis of fractional Laguerre basis for system approximation. Automatica 43, 1640–1648 (2007)

    MathSciNet  MATH  Google Scholar 

  4. D. Babusci, G. Dattoli, On the logarithm of the derivative operator arXiv e-prints (2011)

  5. A. Benchellal, T. Poinot, C. Trigeassou, Approximation and identification of diffusive interfaces by fractional systems. Signal Process. 86(10), 2712–2727 (2006)

    MATH  Google Scholar 

  6. Y. Chen, I. Petras, D. Xue, Fractional order control—A tutorial, in 2009 American Control Conference, St. Louis, USA (2009), pp. 1397–1411

  7. E.K. Chong, S.H. Zak, An Introduction to Optimization (Wiley, New York, 1996)

    MATH  Google Scholar 

  8. O. Cois, A. Oustaloup, T. Poinot, J. Battaglia, Fractional state variable filter for system identification by fractional model, in European Control Conference, Porto, Portugal (2001)

  9. J.E. Diamessis, A new method for determining the parameters of physical systems, in Proceedings of the IEEE (1965), pp. 205–206

  10. S.M. Fahim, S. Ahmed, S.A. Imtiaz, Fractional order model identification using the sinusoidal input. ISA Trans. 83, 35–41 (2018). https://doi.org/10.1016/j.isatra.2018.09.009

    Google Scholar 

  11. R. Fletcher, Practical Methods of Optimization. Vol. 1: Unconstrained Optimization (Wiley, New York, 1980)

    MATH  Google Scholar 

  12. J.D. Gabano, T. Poinot, H. Kanoun, Identification of a thermal system using continuous linear parameter-varying fractional modelling. IET Control Theory Appl. 5(7), 889–899 (2011)

    MathSciNet  Google Scholar 

  13. E.V. Hayngworth, K. Goldbe, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, chap. Bernoulli and Euler Polynomials- Riemann Zeta Function, U.S. Department of Commerce, NIST, Washington DC (1972) pp. 803–820

  14. J. Hines, Operator mathematics II. Math. Mag. 28(4), 199–207 (1955)

    MathSciNet  MATH  Google Scholar 

  15. K. Leyden, B. Goodwine, Fractional-order system identification for health monitoring. Nonlinear Dyn. 92(3), 1317–1334 (2018)

    Google Scholar 

  16. B. Lurie, Three-parameter tunable tilt-integral-derivative (TID) controller. US Patent 5371670 (1994)

  17. R. Malti, S. Victor, A. Oustaloup, Advances in system identification using fractional models. J. Comput. Nonlinear Dyn. 3(2), 0214011–7 (2008)

    Google Scholar 

  18. R. Malti, S. Victor, A. Oustaloup, H. Garnier, An optimal instrumental variable method for continuous-time fractional order model identification, in Proceedings 17th IFAC World Congress, Seoul, Korea (2008), pp. 14379–14384

  19. A.K. Mani, M.D. Narayanan, M. Sen, Parametric identification of fractional-order nonlinear systems. Nonlinear Dyn. 93(2), 945–960 (2018)

    MATH  Google Scholar 

  20. R. Mansouri, M. Bettayeb, S. Djennoune, Approximation of high order integer systems by fractional order reduced parameter models. Math. Comput. Model. 51, 53–62 (2010)

    MathSciNet  MATH  Google Scholar 

  21. W.F. Mascarenhas, Newton iterates can converge to non-stationary points. Math. Program. Ser. A 112, 327–334 (2008)

    MathSciNet  MATH  Google Scholar 

  22. C. Monje, Y. Chen, B. Vinagre, D. Xue, V. Feliu-Batlle, Fractional-order Systems and Controls (Springer, London, 2010)

    MATH  Google Scholar 

  23. M. Muddu, A. Narang, S. Patwardhan, Development of ARX models for predictive control using fractional order and orthonormal basis filter parameterization. Ind. Eng. Chem. Res. 48(19), 8966–8979 (2009)

    Google Scholar 

  24. C.I. Muresan, S. Folea, I.R. Birs, C. Ionescu, A novel fractional-order model and controller for vibration suppression in flexible smart beam. Nonlinear Dyn. 93(2), 525–541 (2018). https://doi.org/10.1007/s11071-018-4207-0

    Google Scholar 

  25. A. Narang, S.L. Shah, T. Chen, Continuous-time model identification of fractional-order models with time delays. IET Control Theory Appl. 15(5), 900–912 (2010)

    MathSciNet  Google Scholar 

  26. P. Nazarian, M. Haeri, M.S. Tavazoei, Identifiability of fractional-order systems using input output frequency contents. ISA Trans. 49, 207–214 (2010)

    Google Scholar 

  27. K. Oldham, J. Myland, J. Spanier, An Atlas of Functions, 2nd edn. (Springer, New York, 2000)

    MATH  Google Scholar 

  28. K. Oldham, J. Spanier, The Fractional Calculus (Academic Press, New York, 1974)

    MATH  Google Scholar 

  29. A. Oustaloup, X. Moreau, M. Nouillant, The CRONE suspension. Control Eng. Pract. 4(8), 1101–1108 (1996)

    Google Scholar 

  30. I. Podlubny, Fractional order systems and \( {PI}^{\lambda } {D}^{\mu }\) controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)

    MathSciNet  MATH  Google Scholar 

  31. T. Poinot, J.C. Trigeassou, Identification of fractional systems using an output-error technique. Nonlinear Dyn. 38(1), 133–154 (2004)

    MathSciNet  MATH  Google Scholar 

  32. H. Raynaud, A. ZergaInoh, State-space representation for fractional order controllers. Automatica 36, 1017–1021 (2000)

    MathSciNet  MATH  Google Scholar 

  33. L. Sersour, T. Djamah, M. Bettayeb, Nonlinear system identification of fractional wiener models. Nonlinear Dyn. 92(4), 1493–1505 (2018). https://doi.org/10.1007/s11071-018-4142-0

    Google Scholar 

  34. M. Tavakoli-Kakhki, M. Haeri, M. Tavazoei, Simple fractional order model structures and their applications in control system design. Eur. J. Control 16(6), 680–694 (2010)

    MathSciNet  MATH  Google Scholar 

  35. M. Tavakoli-Kakhki, M. Haeri, M.S. Tavazoei, Over- and under-convergent step responses in fractional-order transfer functions. Trans. Inst. Meas. Control 32(4), 376–394 (2010)

    Google Scholar 

  36. M. Tavakoli-Kakhki, M. Tavazoei, Estimation of the order and parameters of fractional order models from a noisy step response data. J. Dyn. Syst. Meas. Control 136(3), 0310201–6 (2014)

    Google Scholar 

  37. M.S. Tavazoei, Overshoot in the step response of fractional-order control systems. J. Process Control 22, 90–94 (2012)

    Google Scholar 

  38. D. Valerio, M.D. Ortigueira, J.S. da Costa, Identifying a transfer function from a frequency response. J. Comput. Nonlinear Dyn. 3(2), 0212071–7 (2008)

    Google Scholar 

  39. S. Victor, R. Malti, Model order identification for fractional-order models, in European Control Conference, Zurich, Switzerland (2013), pp. 3470–3475

  40. S. Victor, R. Malti, H. Garnier, A. Oustaloup, Parameter and differential order estimation of fractional-order models. Automatica 49, 926–935 (2013)

    MATH  Google Scholar 

  41. P.C. Young, Optimal IV identification and estimation of continuous-time TF models, in IFAC World Congress, Barcelona, Spain (2002), pp. 337–358

  42. L. Yuan, Q. Yang, C. Zeng, Chaos detection and parameter identification in fractional-order chaotic systems with delay. Nonlinear Dyn. 73(1), 439–448 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author acknowledges the financial supports from Research and Development Corporation (RDC) of Newfoundland and Labrador and Natural Sciences and Engineering Research Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salim Ahmed.

Ethics declarations

Conflicts of interest

The author declares that there is no conflict of interest.

Human Participants

The study does not involve any human participants and/or animal. The manuscript has not been published previously (partly or in full).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S. Step Response-Based Identification of Fractional Order Time Delay Models. Circuits Syst Signal Process 39, 3858–3874 (2020). https://doi.org/10.1007/s00034-020-01344-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01344-7

Keywords

Navigation