Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A Memristor Neural Network Using Synaptic Plasticity and Its Associative Memory

  • 84 Accesses

Abstract

The passivity, low power consumption, memory characteristics and nanometer size of memristors make them the best choice to simulate synapses in artificial neural networks. In this paper, based on the proposed associative memory rules, we design a memristor neural network with plasticity synapses, which can perform analog operations similar to its biological behavior. For the memristor neural network circuit, we also construct a relatively simple Pavlov’s dog experiment simulation circuit, which can effectively reduce the complexity and power consumption of the network. Some advanced neural activities including learning, associative memory and three kinds of forgetting are realized based on the spiking-rate-dependent plasticity rule. Finally, the Simulation program with integrated circuit emphasis is used to simulate the circuit. The simulation results not only prove the correctness of the design, but also help to realize more efficient, simpler and more complex analog circuit of memristor neural network and then help to realize more intelligent, smaller and low-power brain chips.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    S. Alam, S.M. Rezaul Hasan, A VLSI circuit emulation of chemical synaptic transmission dynamics and postsynaptic DNA transcription. IEEE Trans. Very Large Scale Integr. Syst. 24(2), 678–691 (2015)

  2. 2.

    F. Alibart, S. Pleutin, C. Novembre et al., An organic nanoparticle transistor behaving as a biological spiking synapse. Adv. Func. Mater. 20(2), 330–337 (2010)

  3. 3.

    A. F. Adzmi, A. Nasrudin, W. F. H. Abdullah, et al., Memristor spice model for designing analog circuit, in IEEE Student Conference on Research and Development, pp. 78–83 (2012)

  4. 4.

    C. H. Bennett, D. Chabi, T. Cabaret, et al., Supervised learning with organic memristor devices and prospects for neural crossbar arrays, in Proceedings of the IEEE International Symposium on Nanoscale Architectures, pp. 181–186 (2015)

  5. 5.

    O. Bichler, W. Zhao et al., Pavlov’s dog associative learning demonstrated on synaptic-like organic transistors. Neural Comput. 25(2), 549–566 (2013). https://doi.org/10.1162/NECO_a_00377

  6. 6.

    K.D. Cantley, A. Subramaniam, H.J. Stiegler et al., Neural learning circuits utilizing nano-crystalline silicon transistors and memristors. IEEE Trans.Neural Netw. Learn. Syst. 23(4), 565–573 (2012)

  7. 7.

    T. Chang, S.H. Jo, W. Lu, Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5(9), 7669–7676 (2011)

  8. 8.

    L. Chen, C.D. Li, X. Wang, S.K. Duan, Associate learning and correcting in a memristive neural network. Neural Comput. Appl. 22(6), 1071–1076 (2013)

  9. 9.

    L.O. Chua, Memristor-the missing circuit element. Circuit Theory 18(5), 507–519 (1971)

  10. 10.

    L.O. Chua, Everything you wish to know about memristors but are afraid to ask. Radioengineering 24(2), 319–369 (2015)

  11. 11.

    A. C. Ferri, A. Rapoport, P. I. Fierens, et al., Mimicking spike-timing-dependent plasticity with emulated memristors, in Argentine Conference on Electronics, IEEE, pp. 58–64 (2019)

  12. 12.

    L. Gao, F. Alibart, D.B. Strukov, Programmable CMOS/memristor threshold logic. IEEE Trans. Nanotechnol. 12(2), 115–119 (2013)

  13. 13.

    S.G. Hu, Y. Liu, T.P. Chen, J.J. Wang et al., Associative memory realized by a reconfigurable memristive Hopfield neural network. Nature Commun. 6, 7522 (2015)

  14. 14.

    Y.N. Joglekar, S.J. Wolf, The elusive memristor: properties of basic electrical circuits. Eur. J. Phys. 30(4), 661–675 (2009)

  15. 15.

    E.R. Kandel, J.H. Schwartz, T.M. Jessell, Principles of Neural Science, vol. 4 (McGraw-Hill, New York, 2000), pp. 1227–1246

  16. 16.

    M.J. Lee, C.B. Lee, D. Lee et al., A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures. Nat. Mater. 10(8), 625–630 (2011)

  17. 17.

    Y. Li, Y.P. Zhong, J.J. Zhang et al., Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems. Sci. Rep. 4, 4906 (2014)

  18. 18.

    X.Y. Liu, Z.G. Zeng, S.P. Wen, Implementation of memristive neural network with full-function pavlov associative memory. IEEE Trans. Circuits Syst. 63(9), 1456–1463 (2016)

  19. 19.

    D.M. Ma, G.Y. Wang, C.Y. Han, Y.R. Shen, Y. Liang, A memristive neural network model with associative memory for modeling affections. IEEE Access 6, 61614–61622 (2018)

  20. 20.

    S. Mandal, A. Saha, Memristors act as synapses in neuromorphic architectures, in IEEE International Conference on Communication and Electronics Systems, pp. 1–5 (2016)

  21. 21.

    V. Mladenov, S. Kirilov, A memristor model with a modified window function and activation thresholds, in IEEE International Symposium on Circuits and Systems, pp. 1–5 (2018)

  22. 22.

    P.S. Maheshwar, K. Hyongsuk, L.O. Chua, Brains are made of memristors. IEEE Circuits Syst. Mag. First Q. 14(1), 12–36 (2014)

  23. 23.

    Z.I. Mannan, S.P. Adhikari et al., Memristive imitation of synaptic transmission and plasticity. IEEE Trans. Neural Netw. Learn. Syst. 30, 3458–3470 (2019)

  24. 24.

    T. Moraitis, A. Sebastian, E. Eleftheriou, The role of short-term plasticity in neuromorphic learning: learning from the timing of rate-varying events with fatiguing spike-timing-dependent plasticity. IEEE Nanatechnol. Mag. 12(3), 45–53 (2018)

  25. 25.

    M. Noack, M. Krause, C. Mayr, et al., VLSI implementation of a conductance-based multi-synapse using switched-capacitor circuits, in IEEE International Symposium on Circuits and Systems, vol 10, pp. 850–853 (2014)

  26. 26.

    Y.V. Pershin, M.D. Ventra, Experimental demonstration of associative memory with memristive neural networks. Neural Netw 23(7), 881–886 (2010)

  27. 27.

    M.P. Sah, H. Kim, L.O. Chua, Brains are made of memristors. Circuits Syst Mag IEEE 14(1), 12–36 (2014)

  28. 28.

    S. Sayyaparaju, S. Amer, G. S. Rose, A bi-memristor synapse with spike-timing-dependent plasticity for on-chip learning in memristive neuromorphic systems, in IEEE International Symposium on Quality Electronic Design, pp. 69–74 (2018)

  29. 29.

    T. Shibata, H. Kosaka, H. Ishii et al., A neuron-MOS neural network using self-learning-compatible synapse circuits. IEEE J. Solid-State Circuits 30(8), 913–922 (1995)

  30. 30.

    G. Snider, R. Amerson et al., From synapses to circuitry: using memristive memory to explore the electronic brain. Computer 44(2), 21–28 (2011)

  31. 31.

    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 534, 80–83 (2008)

  32. 32.

    A. Tavanaei, M. Ghodrati, S.R. Kheradpisheh et al., Deep learning in spiking neural networks. Neural Netw. (2018). https://doi.org/10.1016/j.neunet.2018.12.002

  33. 33.

    G.Y. Wang, J.L. He, F. Yuan et al., Dynamical behaviors of a TiO2 memristor oscillator. Chin. Phys. Lett. 30(11), 468–477 (2013)

  34. 34.

    S.P. Wen, S.X. Xiao, Z. Yan, Z. Zeng et al., Adjusting learning rate of memristor-based multilayer neural networks via fuzzy method. IEEE Trans. Computer-Aided Des. Integr. Circuits Syst. 38(6), 1084–1094 (2018)

  35. 35.

    K. L. Yang, S. J. Yuan et al., A flexible artificial synapse for neuromorphic system, in IEEE International Conference on Electron Devices and Solid State Circuits, pp. 1–2 (2018)

  36. 36.

    L. Yang, Z. G. Zeng, Y. Huang, An associative-memory-based reconfigurable memristive neuromorphic system with synchronous weight training, IEEE Trans. Cogn. Dev. Syst., pp. 1–2 (2019)

  37. 37.

    F. Yuan, G.Y. Wang, X.W. Wang, Extreme multistability in a memristor-based multi-scroll hyper-chaotic system. Chaos Interdiscip. J. Nonlinear Sci. 26(7), 073107 (2016)

  38. 38.

    F. T. Zohora, S. Debnath, et al., Memristor-CMOS hybrid implementation of leaky integrate and fire neuron model, in International Conference on Electrical, Computer and Communication Engineering, pp. 1–5 (2019)

  39. 39.

    Y. Zhang, Y. Shen, X.P. Wang, L. Cao, A novel design for memristor-based logic switch and crossbar circuits. IEEE Trans. Circuits Syst. 62(5), 1402–1411 (2015)

  40. 40.

    Y. Zhang, X.P. Wang, E.G. Friedman, Memristor-based circuit design for multilayer neural networks. IEEE Trans. Circuits Syst. 65(2), 677–686 (2018)

  41. 41.

    N. Zheng, P. Mazumder, Learning in memristor crossbar-based spiking neural networks through modulation of weight-dependent spike-timing-dependent plasticity. IEEE Trans. Nanotechnol. 17(3), 520–532 (2018)

  42. 42.

    Y. D. Zhang, Z. G. Zeng, S. P. Wen, Implementation of memristive neural networks with spike-rate-dependent plasticity synapses, in International Joint Conference on Neural Networks, pp. 2226–2233 (2014)

  43. 43.

    M. Ziegler, R. Soni, T. Patelczyk, M. Ignatov et al., An electronic version of Pavlovs dog. Adv. Func. Mater. 22(13), 2744–2749 (2012)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 61771176, 61801154.

Author information

Correspondence to Guangyi Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, G., Shen, Y. et al. A Memristor Neural Network Using Synaptic Plasticity and Its Associative Memory. Circuits Syst Signal Process (2020). https://doi.org/10.1007/s00034-019-01330-8

Download citation

Keywords

  • Associative memory
  • Synaptic plasticity
  • Memristor neural network
  • Memristor