Skip to main content
Log in

Tracking Controller Design with Preview Action for a Class of Lipschitz Nonlinear Systems and its Applications

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper addresses the problem of output tracking control with preview action for a class of Lipschitz nonlinear systems. By adopting a backward difference approach, an augmented error system is successfully constructed that fully utilizes the available future information in the reference signal as well as disturbances. The output tracking control problem with preview action is thereby reduced to a stabilization problem. Then, both the state feedback controller and the static output feedback controller are systematically developed. With the aid of the S-procedure and auxiliary matrix variable approach, sufficient design conditions for the asymptotic stability of the closed-loop system are presented through linear matrix inequality formulation. Based on these criteria, two novel output tracking control laws are derived. Finally, two numerical examples are provided to highlight the effectiveness and superiority of the proposed control methodologies in terms of enhancing the overall tracking performance of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. An, J. Liu, C. Wang, L. Wu, Approximate back-stepping fault-tolerant control of the flexible air-breathing hypersonic vehicle. IEEE/ASME Trans. Mechatron. 21(3), 1680–1691 (2015)

    Google Scholar 

  2. M. Cao, F. Liao, Design of an optimal preview controller for linear discrete-time descriptor systems with state delay. Int. J. Syst. Sci. 46(5), 932–943 (2015)

    MathSciNet  MATH  Google Scholar 

  3. J. Cao, R. Sivasamy, R. Rakkiyappan, Sampled-data H synchronization of chaotic Lur’e systems with time delay. Circuits Syst. Signal Process. 35(3), 811–835 (2016)

    MathSciNet  MATH  Google Scholar 

  4. K. Chaib Draa, A. Zemouche, M. Alma, H. Voos, M. Darouach, A discrete-time nonlinear state observer for the anaerobic digestion process. Int. J. Robust Nonlinear Control 29(5), 1279–1301 (2019)

    MathSciNet  MATH  Google Scholar 

  5. X.H. Chang, L. Zhang, J.H. Park, Robust static output feedback H control for uncertain fuzzy systems. Fuzzy Sets Syst. 273, 87–104 (2015)

    MathSciNet  MATH  Google Scholar 

  6. C.E. de Souza, X. Li, Delay-dependent robust H control of uncertain linear state-delayed systems. Automatica 35(7), 1313–1321 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Z. Ding, Consensus control of a class of Lipschitz nonlinear systems. Int. J. Control 87(11), 2372–2382 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Z. Gao, Estimation and compensation for Lipschitz nonlinear discrete-time systems subjected to unknown measurement delays. IEEE Trans. Ind. Electron. 62(9), 5950–5961 (2015)

    Google Scholar 

  9. S.S. Ge, C. Wang, Adaptive control of uncertain Chua’s circuits. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 47(9), 1397–1402 (2000)

    MathSciNet  MATH  Google Scholar 

  10. Y. Gu, G.-H. Yang, Event-triggered fault detection for discrete-time Lipschitz nonlinear networked systems in finite-frequency domain. Neurocomputing 260, 245–256 (2017)

    Google Scholar 

  11. S. He, W. Lyu, F. Liu, Robust H sliding mode controller design of a class of time-delayed discrete conic-type nonlinear systems. IEEE Trans. Syst. Man. Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2884491

    Article  Google Scholar 

  12. S. Ibrir, W.F. Xie, C.Y. Su, Observer-based control of discrete-time Lipschitzian non-linear systems: application to one-link flexible joint robot. Int. J. Control 78(6), 385–395 (2005)

    MathSciNet  MATH  Google Scholar 

  13. A.S.M. Isira, Z. Zuo, Z. Ding, Leader-follower consensus control of Lipschitz nonlinear systems by output feedback. Int. J. Syst. Sci. 47(16), 3772–3781 (2016)

    MathSciNet  MATH  Google Scholar 

  14. T. Katayama, T. Ohki, T. Inoue, T. Kato, Design of an optimal controller for a discrete-time system subject to previewable demand. Int. J. Control 41(3), 677–699 (1985)

    MathSciNet  MATH  Google Scholar 

  15. T. Katayama, T. Ohki, T. Inoue, T. Kato, Design of an optimal servomechanism with preview action and its dual problem. Int. J. Control 45(2), 407–420 (1987)

    Google Scholar 

  16. S. Lee, Observer for discrete-time Lipschitz non-linear systems with delayed output. IET Control Theory Appl. 5(1), 54–62 (2011)

    MathSciNet  Google Scholar 

  17. L. Li, F. Liao, Parameter-dependent preview control with robust tracking performance. IET Control Theory Appl. 11(1), 38–46 (2016)

    MathSciNet  Google Scholar 

  18. L. Li, F. Liao, J. Deng, H preview control of a class of uncertain discrete-time systems. Asian J. Control 19(4), 1542–1556 (2017)

    MathSciNet  MATH  Google Scholar 

  19. F. Liao, Z. Ren, Design of a preview controller for nonlinear systems based on the control system direct method. Control Decis. 28(11), 1679–1684 (2013)

    MATH  Google Scholar 

  20. F. Liao, Z. Ren, M. Tomizuka, J. Wu, Preview control for impulse-free continuous-time descriptor systems. Int. J. Control 88(6), 1142–1149 (2015)

    MathSciNet  MATH  Google Scholar 

  21. J. Liu, H. An, Y. Gao, C. Wang, L. Wu, Adaptive control of hypersonic flight vehicles with limited angle-of-attack. IEEE/ASME Trans. Mechatron. 23(2), 883–894 (2018)

    Google Scholar 

  22. J. Liu, Y. Gao, X. Su, M. Wack, L. Wu, Disturbance-observer-based control for air management of PEM fuel cell systems via sliding mode technique. IEEE Trans. Contr. Syst. Technol. 27(3), 1129–1138 (2018)

    Google Scholar 

  23. A. Moran, M. Nagai, Optimal preview control of rear suspension using nonlinear neural networks. Veh. Syst. Dyn. 22, 321–334 (1993)

    Google Scholar 

  24. A. Nasiri, S.K. Nguang, A. Swain, D.J. Almakhles, Robust output feedback controller design of discrete-time Takagi–Sugeno fuzzy systems: a non-monotonic Lyapunov approach. IET Control Theory Appl. 10(5), 545–553 (2016)

    MathSciNet  Google Scholar 

  25. A.M. Pertew, H.J. Marquez, Q. Zhao, Sampled-data stabilization of a class of nonlinear systems with application in robotics. ASME J. Dyn. Syst. Meas. Control 131(2), 1–8 (2009)

    Google Scholar 

  26. M. Rehan, K.S. Hong, S.S. Ge, Stabilization and tracking control for a class of nonlinear systems. Nonlinear Anal. RWA 12(3), 1786–1796 (2011)

    MathSciNet  MATH  Google Scholar 

  27. C. Ren, R. Nie, S. He, Finite-time positiveness and distributed control of Lipschitz nonlinear multi-agent systems. J. Frankl. Inst. 356(15), 8080–8092 (2019)

    MathSciNet  MATH  Google Scholar 

  28. J. Song, S. He, Finite-time robust passive control for a class of uncertain Lipschitz nonlinear systems with time-delays. Neurocomputing 159, 275–281 (2015)

    Google Scholar 

  29. Q. Song, F. Liu, J. Cao, J. Lu, Some simple criteria for pinning a Lur’e network with directed topology. IET Control Theory Appl. 8(2), 131–138 (2014)

    MathSciNet  MATH  Google Scholar 

  30. G. Sun, L. Wu, Z. Kuang, Z. Ma, J. Liu, Practical tracking control of linear motor via fractional-order sliding mode. Automatica 94, 221–235 (2018)

    MathSciNet  MATH  Google Scholar 

  31. M. Tomizuka, D.E. Rosenthal, On the optimal digital state vector feedback controller with integral and preview actions. ASME J. Dyn. Syst. Meas. Control 101(2), 172–178 (1979)

    Google Scholar 

  32. T. Tsuchiya, T. Egami, Digital Preview and Predictive Control (Translated by Fucheng Liao). (Beijing Science and Technology Press, Beijing, 1994)

  33. A. ur Rehman, M. Rehan, N. Iqbal, C.K. Ahn, Toward LPV approach for adaptive distributed consensus of Lipschitz multi-agents. IEEE Trans. Circuits Syst. II Exp. Briefs 66(1), 91–95 (2018)

    Google Scholar 

  34. K.G. Vamvoudakis, A. Mojoodi, H. Ferraz, Event-triggered optimal tracking control of nonlinear systems. Int. J. Robust Nonlinear Control 27(4), 598–619 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Z. Wang, Information fusion optimal preview control for nonlinear discrete system. Control Decis. 23(4), 397–402 (2008)

    MathSciNet  MATH  Google Scholar 

  36. Z. Wang, F. Gao, Adaptive output trajectory tracking control for a class of affine nonlinear discrete-time systems. IEEE Trans. Syst. Man. Cybern. Syst. 46(3), 326–333 (2016)

    MathSciNet  Google Scholar 

  37. L.B. Wu, H. Wang, Asynchronous adaptive fault-tolerant control for a class of switched nonlinear systems with mode-dependent dwell time. IEEE Access 5, 22092–22100 (2017)

    Google Scholar 

  38. C. Wu, J. Liu, X. Jing, H. Li, L. Wu, Adaptive fuzzy control for nonlinear networked control systems. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2420–2430 (2017)

    Google Scholar 

  39. M. Yadegar, M. Davoodi, Observer-based tracking controller design for quasi-one-sided Lipschitz nonlinear systems. Optim. Control Appl. Methods (2018). https://doi.org/10.1002/oca.2432

    Article  MathSciNet  MATH  Google Scholar 

  40. M. Yadegar, A. Afshar, M. Davoodi, Observer-based tracking controller design for a class of Lipschitz nonlinear systems. J. Vib. Control 24(11), 2112–2119 (2018)

    MathSciNet  MATH  Google Scholar 

  41. A. Zemouche, M. Boutayeb, Observer design for Lipschitz nonlinear systems: the discrete-time case. IEEE Trans. Circuits Syst. II Exp. Briefs 53(8), 777–781 (2006)

    Google Scholar 

  42. A. Zemouche, M. Boutayeb, Nonlinear-observer-based H synchronization and unknown input recovery. IEEE Trans. Circuits Syst. I Reg. Papers 56(8), 1720–1731 (2009)

    MathSciNet  MATH  Google Scholar 

  43. A. Zemouche, M. Boutayeb, On LMI conditions to design observers for Lipschitz nonlinear systems. Automatica 49(2), 585–591 (2013)

    MathSciNet  MATH  Google Scholar 

  44. A. Zemouche, M. Boutayeb, G.I. Bara, Observers for a class of Lipschitz systems with extension to H performance analysis. Syst. Control Lett. 57(1), 18–27 (2008)

    MathSciNet  MATH  Google Scholar 

  45. W. Zhang, H. Su, F. Zhu, Y. Dong, A note on observers for discrete-time Lipschitz nonlinear systems. IEEE Trans. Circuits Syst. II Exp. Briefs 59(2), 123–127 (2012)

    Google Scholar 

  46. W. Zhang, H. Su, F. Zhu, M. Wang, Observer-based H synchronization and unknown input recovery for a class of digital nonlinear systems. Circuits Syst. Signal Process. 32(6), 2867–2881 (2013)

    MathSciNet  Google Scholar 

  47. Z. Zuo, J. Zhang, Y. Wang, Adaptive fault-tolerant tracking control for linear and Lipschitz nonlinear multi-agent systems. IEEE Trans. Ind. Electron. 62(6), 3923–3931 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2017YFF0207401) and the Oriented Award Foundation for Science and Technological Innovation, Inner Mongolia Autonomous Region, China (No. 2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fucheng Liao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Liao, F. & Deng, J. Tracking Controller Design with Preview Action for a Class of Lipschitz Nonlinear Systems and its Applications. Circuits Syst Signal Process 39, 2922–2947 (2020). https://doi.org/10.1007/s00034-019-01313-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01313-9

Keywords

Navigation