Skip to main content
Log in

Robust PCA Using Nonconvex Rank Approximation and Sparse Regularizer

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

We consider the robust principal component analysis (RPCA) problem where the observed data are decomposed to a low-rank component and a sparse component. Conventionally, the matrix rank in RPCA is often approximated using a nuclear norm. Recently, RPCA has been formulated using the nonconvex \(\ell _{\gamma }\)-norm, which provides a closer approximation to the matrix rank than the traditional nuclear norm. However, the low-rank component generally has sparse property, especially in the transform domain. In this paper, a sparsity-based regularization term modeled with \(\ell _1\)-norm is introduced to the formulation. An iterative optimization algorithm is developed to solve the obtained optimization problem. Experiments using synthetic and real data are utilized to validate the performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The codes of noncvxRPCA were downloaded from the Web site https://github.com/sckangz/noncvx-PRCA. As the codes of the LRSD-TNN algorithm are not available, we implemented this algorithm by ourselves. The codes of IALM were downloaded from http://perception.csl.illinois.edu/matrix-rank/sample_code.html.

  2. http://perception.i2r.astar.edu.sg/bk_model/bk_index.html.

References

  1. A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  2. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  Google Scholar 

  3. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge Univeristy Press, Cambridge, 2004)

    Book  Google Scholar 

  4. E.J. Candès, X. Li, Y. Ma, J. Wright, Robust principal component analysis? J. ACM (JACM) 58(3), 11 (2011)

    Article  MathSciNet  Google Scholar 

  5. E.J. Candès, B. Recht, Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717 (2009)

    Article  MathSciNet  Google Scholar 

  6. E.J. Candes, T. Tao, The Power of Convex Relaxation: Near-Optimal Matrix Completion (IEEE Press, Piscataway, 2010)

    MATH  Google Scholar 

  7. F. Cao, J. Chen, H. Ye, J. Zhao, Z. Zhou, Recovering low-rank and sparse matrix based on the truncated nuclear norm. Neural Netw. 85, 10–20 (2017)

    Article  Google Scholar 

  8. W. Cao, Y. Wang, J. Sun, D. Meng, C. Yang, A. Cichocki, Z. Xu, Total variation regularized tensor RPCA for background subtraction from compressive measurements. IEEE Trans. Image Process. 25(9), 4075–4090 (2016)

    Article  MathSciNet  Google Scholar 

  9. J. Dong, Z. Xue, J. Guan, Z.F. Han, W. Wang, Low rank matrix completion using truncated nuclear norm and sparse regularizer. Sig. Process. Image Commun. 68, 76–87 (2018)

    Article  Google Scholar 

  10. D. Goldfarb, S. Ma, K. Scheinberg, Fast alternating linearization methods for minimizing the sum of two convex functions. Math. Program. 141(1–2), 349–382 (2013)

    Article  MathSciNet  Google Scholar 

  11. Y. Hu, D. Zhang, J. Ye, X. Li, X. He, Fast and accurate matrix completion via truncated nuclear norm regularization. IEEE Trans. Pattern Anal. Mach. Intell. 35(9), 2117–2130 (2013)

    Article  Google Scholar 

  12. P.S. Huang, S.D. Chen, P. Smaragdis, Hasegawa-Johnson, M.: Singing-voice separation from monaural recordings using robust principal component analysis, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2012), pp. 57–60

  13. Y. Jianchao, W. John, H. Thomas, M. Yi, Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

    Article  MathSciNet  Google Scholar 

  14. W. John, A.Y. Yang, G. Arvind, S.S. Shankar, M. Yi, Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

    Article  Google Scholar 

  15. I. Jolliffe, Principal Component Analysis (Springer, Berlin, 2011)

    MATH  Google Scholar 

  16. Z. Kang, C. Peng, Q. Cheng, Robust PCA via nonconvex rank approximation, in IEEE International Conference on Data Mining (ICDM) (IEEE, 2015), pp. 211–220

  17. V.A. Kumar, C.V.R. Rao, A. Dutta, Performance analysis of blind source separation using canonical correlation. Circuits Syst. Sig. Process. 37(2), 658–673 (2018)

    Article  MathSciNet  Google Scholar 

  18. K.C. Lee, J. Ho, D.J. Kriegman, Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 684–698 (2005)

    Article  Google Scholar 

  19. L. Li, W. Huang, I.Y.H. Gu, Q. Tian, Statistical modeling of complex backgrounds for foreground object detection. IEEE Trans. Image Process. 13(11), 1459–1472 (2004)

    Article  Google Scholar 

  20. Z. Lin, M. Chen, Y. Ma, The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv:1009.5055 (2010)

  21. G. Liu, Z. Lin, Y. Yu, Robust subspace segmentation by low-rank representation, in Proceedings of the 27th International Conference on Machine Learning (ICML-10) (2010), pp. 663–670

  22. N. Merhav, R. Kresch, Approximate convolution using DCT coefficient multipliers. IEEE Trans. Circuits Syst. Video Technol. 8(4), 378–385 (1998)

    Article  Google Scholar 

  23. R. Otazo, E. Candès, D.K. Sodickson, Low-rank plus sparse matrix decomposition for accelerated dynamic mri with separation of background and dynamic components. Magn. Reson. Med. 73(3), 1125–1136 (2015)

    Article  Google Scholar 

  24. Y. Peng, A. Ganesh, J. Wright, W. Xu, Y. Ma, RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2233–2246 (2012)

    Article  Google Scholar 

  25. Y. Shen, Z. Wen, Y. Zhang, Augmented Lagrangian alternating direction method for matrix separation based on low-rank factorization. Optim. Methods Softw. 29(2), 239–263 (2014)

    Article  MathSciNet  Google Scholar 

  26. K.-C. Toh, S. Yun, An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems. Pac. J. Optim. 6(3), 615–640 (2010)

    MathSciNet  MATH  Google Scholar 

  27. E. Vincent, R. Gribonval, C. Févotte, Performance measurement in blind audio source separation. IEEE Trans. Audio Speech Lang. Process. 14(4), 1462–1469 (2006)

    Article  Google Scholar 

  28. R. Werner, M. Wilmsy, B. Cheng, N.D. Forkert, Beyond cost function masking: RPCA-based non-linear registration in the context of VLSM, in International Workshop on Pattern Recognition in Neuroimaging (PRNI) (IEEE, 2016), pp. 1–4

  29. J. Wright, A. Ganesh, S. Rao, Y. Peng, Y. Ma, Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization, in Advances in Neural Information Processing Systems (2009), pp. 2080–2088

  30. J. Wright, Y. Ma, J. Mairal, G. Sapiro, T.S. Huang, S. Yan, Sparse representation for computer vision and pattern recognition. Proc. IEEE 98(6), 1031–1044 (2010)

    Article  Google Scholar 

  31. Z. Xue, J. Dong, Y. Zhao, C. Liu, R. Chellali, Low-rank and sparse matrix decomposition via the truncated nuclear norm and a sparse regularizer. Vis. Comput. 35(11), 1549–1566 (2018)

  32. X. Yuan, J. Yang, Sparse and low rank matrix decomposition via alternating direction method. Pac. J. Optim. 9(1), 1–11 (2009)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61906087), the Natural Science Foundation of Jiangsu Province of China (BK20180692), and the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province of China (17KJB510025). The authors thank the associate editor and the anonymous reviewers for their contributions to improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Xue, Z. & Wang, W. Robust PCA Using Nonconvex Rank Approximation and Sparse Regularizer. Circuits Syst Signal Process 39, 3086–3104 (2020). https://doi.org/10.1007/s00034-019-01310-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01310-y

Keywords

Navigation