Skip to main content
Log in

High-Voltage Amplifier with High Dynamic Response for Stick–Slip Driving

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Stick–slip driving is widely applied because it provides a nearly infinite range of motion with sub-micron resolution, but its movement velocity is impacted by the dynamic response of high-voltage amplifiers. Therefore, this paper presents a high-voltage amplifier with a high dynamic response specific to stick–slip driving. Considering the capacitive load characteristic of stick–slip driving, an analog amplification circuit is designed to realize a high output voltage, and then a gate driving optimization method is proposed to improve the dynamic response performance of the amplifier. To verify the high dynamic characteristic of the voltage amplifier, an experimental system was built to test the dynamic response performance of the amplifier by monitoring the output voltage. The experimental results show that the gate driving optimization method improved the dynamic response performance by more than 10 times, and the amplifier can output an high dynamic voltage signal up to 150 V when driving a capacitive load of 0.5 μF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. L.K. Barrett, T. Stark, J. Reeves, R. Lally, A. Stange, C. Pollock, M. Imboden, D.J.B. Ishop, A large range of motion 3D MEMS scanner with five degrees of freedom. J. Microelectromech. Syst. 28(1), 170–179 (2019). https://doi.org/10.1109/JMEMS.2018.2886653

    Article  Google Scholar 

  2. C.H. Belussi, M.G. Berisso, Y. Fasanoa, Note: single-polarity high-voltage amplifier to drive coarse-approach slip-stick piezoelectric motors. Rev. Sci. Instrum. 84(5), 056104 (2013). https://doi.org/10.1063/1.4804166

    Article  Google Scholar 

  3. L. Cheng, W.C. Liu, C.G. Yang, T.W. Huang, Z.G. Hou, M. Tan, A neural-network-based controller for piezoelectric-actuated stick-slip devices. IEEE Trans. Ind. Electron. 65(3), 2598–2607 (2018). https://doi.org/10.1109/TIE.2017.2740826

    Article  Google Scholar 

  4. A.J. Fleming, A megahertz bandwidth dual amplifier for driving piezoelectric actuators and other highly capacitive loads. Rev. Sci. Instrum. 80(10), 104701 (2009). https://doi.org/10.1063/1.3234261

    Article  Google Scholar 

  5. S.L. Jeng, Y.C. Tung, A multicell linear power amplifier for driving piezoelectric loads. IEEE Trans. Ind. Electron. 55(10), 3644–3652 (2008). https://doi.org/10.1109/TIE.2

    Article  Google Scholar 

  6. J.I. Lee, X.H. Huang, P.B. Chu, Nanoprecision MEMS capacitive sensor for linear and rotational positioning. J. Microelectromech. Syst. 18(3), 660–670 (2009). https://doi.org/10.1109/JMEMS.2009.2016275

    Article  Google Scholar 

  7. J.Y. Lee, W.C. Lee, Y.H. Cho, Serially connected weight-balanced digital actuators for wide-range high-precision low-voltage-displacement control. J. Microelectromech. Syst. 18(4), 792–798 (2009). https://doi.org/10.1109/JMEMS.2009.2023843

    Article  Google Scholar 

  8. D. Marano, G. Palumbo, S. Pennisi, Step-response optimisation techniques for low-power, high-load, three-stage operational amplifiers driving large capacitive loads. IET Circuits Devices Syst. 4(2), 87–98 (2010). https://doi.org/10.1049/iet-cds.2009.0126

    Article  Google Scholar 

  9. M. Miguez, J. Gak, A. Oliva, A. Arnaud, Active current mirrors for low-voltage analog circuit design. Circuits Syst. Signal Process. 36(12), 4869–4885 (2017). https://doi.org/10.1007/s00034-017-0650-2

    Article  Google Scholar 

  10. A. Milecki, R. Regulski, Investigations of electronic amplifiers supplying a piezobimorph actuator. Mech. Syst. Signal Process. 78, 43–54 (2016). https://doi.org/10.1016/jymssp.2016.01.011

    Article  Google Scholar 

  11. X.H. Nguyen, T.H. Mau, I. Meyer, B.L. Dang, H.P. Pham, Improvements of piezo-actuated stick-slip micro-drives: modeling and driving waveform. Coatings 8(2), 62 (2018). https://doi.org/10.3390/coatings8020062

    Article  Google Scholar 

  12. R. Oubellil, A. Voda, M. Boudaoud, S. Regnier, Mixed stepping/scanning mode control of stick-slip SEM-integrated nano-robotic systems. Sens. Actuators A Phys. 285, 258–268 (2018). https://doi.org/10.1016/j.sna.2018.08.042

    Article  Google Scholar 

  13. J.B. Qiu, K.K. Sun, T. Wang, H.J. Gao, Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2895560

    Article  Google Scholar 

  14. N.A. Saadabad, H. Moradi, G. Vossoughi, Dynamic modeling, optimized design, and fabrication of a 2DOF piezo-actuated stick-slip mobile microrobot. Mech. Mach. Theory 133, 514–530 (2019). https://doi.org/10.1016/j.mechmachtheory.2018.11.025

    Article  Google Scholar 

  15. M. Spiller, Z. Hurak, Hybrid charge control for stick-slip piezoelectric actuators. Mechatronics 21(1), 100–108 (2011). https://doi.org/10.1016/j.mechatronics.2010.09.002

    Article  Google Scholar 

  16. K.K. Sun, S.S. Mou, J.B. Qiu, T. Wang, H.J. Gao, Adaptive fuzzy control for nontriangular structural stochastic switched nonlinear systems with full state constraints. IEEE Trans. Fuzzy Syst. 27(8), 1587–1601 (2018). https://doi.org/10.1109/TFUZZ.2018.2883374

    Article  Google Scholar 

  17. H. Veldandi, R.A. Shaik, An ultra-low-voltage bulk-driven analog voltage buffer with rail-to-rail input/output range. Circuits Syst. Signal Process. 36(12), 4886–4907 (2017). https://doi.org/10.1007/s00034-017-0663-x

    Article  Google Scholar 

  18. C.Y. Wang, Wide-dynamic-range and high-sensitivity current-to-voltage converters. Circuits Syst. Signal Process. 29(6), 1223–1236 (2010). https://doi.org/10.1007/s00034-010-9205-5

    Article  MATH  Google Scholar 

  19. D.H. Wang, W. Zhu, Q. Yang, W.M. Ding, A high-voltage and high-power amplifier for driving piezoelectric stack actuators. J. Intell. Mater. Syst. Struct. 20(16), 1987–2001 (2009). https://doi.org/10.1177/1045389X09345559

    Article  Google Scholar 

  20. B. W. Zhong, Z. H. Wang, T. Chen, L.G. Chen, L.N. Sun, The study on the effect of step time on the movement of the cross-scale stage based on the stick-slip driving, in 2013 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3 M-NANO), pp. 357–361 (2013). https://doi.org/10.1109/3M-NANO.2013.6737450

  21. B.W. Zhong, J. Zhu, Z.Q. Jin, H.D. He, L.N. Sun, Z.H. Wang, Improved inertial stick-slip movement performance via driving waveform optimization. Precis. Eng. 55, 260–267 (2019). https://doi.org/10.1016/j.precisioneng.2018.09.016

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (No. 51875378), the National key research and development program (No. 2018YFB1304900), the Jiangsu province Natural Science Foundation (No. BK20181439) and the Suzhou science and technology development project (No. SYG201720). We thank the anonymous reviewers for their constructive comments and suggestions that improved this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bowen Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Zhong, B., Jin, Z. et al. High-Voltage Amplifier with High Dynamic Response for Stick–Slip Driving. Circuits Syst Signal Process 39, 2759–2775 (2020). https://doi.org/10.1007/s00034-019-01289-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01289-6

Keywords

Navigation