Multi-digit Binary-to-Quaternary and Quaternary-to-Binary Converters and Their Applications in Nanoelectronics

Abstract

Using the multi-valued logic causes the reduction in interconnections, thereby leading to the reduction in chip area and interconnection power dissipation. In order to take advantage of the multi-valued logic, the structure of a mixed-radix system using multi-valued and binary logic is more suitable than that of only using the multi-valued logic; so, the design of a multi-digit converter is necessary. In this paper, first, a new efficient quaternary-to-binary converter and a binary-to-quaternary converter based on multi-threshold voltage are designed using carbon nanotube field effect transistor (CNTFET). Then, multi-digit quaternary-to-binary and binary-to-quaternary algorithms are discussed and implemented. Subsequently, these converters are used in a multi-digit quaternary adder. It is shown that, if quaternary numbers are initially converted into binary numbers and then summation is performed (by using multi-digit quaternary-to-binary and binary-to-quaternary converters), the complexity is considerably reduced, as compared with using the quaternary full adders. Also, some other applications of these converters are discussed. The simulation results using the Stanford 32-nm CNTFET model in the HSPICE software at 0.9 V indicate the correct operation and the high performance of the proposed designs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

References

  1. 1.

    E. Abiri, A. Darabi, S. Salem, Design of multiple-valued logic gates using gate-diffusion input for image processing applications. Comput. Electr. Eng. 69, 142–157 (2018)

    Article  Google Scholar 

  2. 2.

    P. Avouris, J. Appenzeller, R. Martel, S.J. Wind, Carbon nanotube electronics. Proc. IEEE 91, 1772–1784 (2003)

    Article  Google Scholar 

  3. 3.

    P.C. Balla, A. Antoniou, Low power dissipation MOS ternary logic family. IEEE J. Solid-State Circuits 19(5), 739–749 (1984)

    Article  Google Scholar 

  4. 4.

    CNFET Model. http://nano.stanford.edu/models

  5. 5.

    K.W. Current, Current-mode CMOS multiple-valued logic circuits. IEEE J. Solid-State Circuits 29, 95–107 (1994)

    Article  Google Scholar 

  6. 6.

    A. Daraei, S.A. Hosseini, Novel energy-efficient and high-noise margin quaternary circuits in nanoelectronics. AEU Int. J. Electron. Commun. 105, 145–162 (2019)

    Article  Google Scholar 

  7. 7.

    S. Das, S. Bhattacharya, D. Das, Performance evaluation of CNTFET-based logic gates using Verilog-AMS, in Proceedings of National Conference on Electronics, Communication and Signal Processing, pp. 85–88 (2011)

  8. 8.

    J. Deng, H.S. Wong, A compact SPICE model for carbon nanotube field effect transistors including nonidealities and its application. IEEE Trans. Electron Devices 54, 3186–3194 (2007)

    Article  Google Scholar 

  9. 9.

    S.A. Ebrahimi, M.R. Reshadinezhad, A. Bohlooli, M. Shahsavari, Efficient CNTFET-based design of quaternary logic gates and arithmetic circuit. Microelectron. J. 53, 156–166 (2016)

    Article  Google Scholar 

  10. 10.

    D. Etiemble, M. Israel, Comparison of binary and multi valued ICs according to VLSI criteria. Computer 21, 28–42 (1988)

    Article  Google Scholar 

  11. 11.

    A. Heung, H.T. Mouftah, Depletion/enhancement CMOS for a low power family of three-valued logic circuits. IEEE J. Solid-State Circuit Soc. 20(2), 609–616 (1985)

    Article  Google Scholar 

  12. 12.

    S.A. Hosseini, S. Etezadi, A novel very low-complexity multi-valued logic comparator in nanoelectronics. Circuits Syst. Signal Process. (2019). https://doi.org/10.1007/s00034-019-01158-2

    Article  Google Scholar 

  13. 13.

    S.L. Hurst, Multiple-valued logic its status and its future. IEEE Trans. Comput. 33, 1160–1179 (1984)

  14. 14.

    P. Keshavarzian, R. Sarikhani, A novel CNTFET-based ternary full adder. Circuits Syst. Signal Process. 33, 665–679 (2014)

    Article  Google Scholar 

  15. 15.

    Y. Lin, J. Appenzeller, J. Knoch, P. Avouris, High-performance carbon nanotube field-effect transistor with tunable polarities. IEEE Trans. Nanotechnol. 4(5), 481–489 (2005)

    Article  Google Scholar 

  16. 16.

    S. Lin, Y.B. Kim, F. Lombardi, CNTFET-based design of ternary logic gates and arithmetic circuits. IEEE Trans. Nanotechnol. 10(2), 217–225 (2011)

    Article  Google Scholar 

  17. 17.

    M.S. Mastoori, F. Razaghian, A novel energy-efficient ternary successor and predecessor using CNTFET. Circuits Syst. Signal Process. 35, 875–895 (2016)

    Article  Google Scholar 

  18. 18.

    P.L. McEuen, M.S. Fuhrer, H. Park, Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1(1), 78–85 (2002)

    Article  Google Scholar 

  19. 19.

    M. Mishra, S.H. Akashe, High performance, low power 200 Gb/s 4:1 MUX with TGLin 45 nm technology. Appl. Nanosci. (2014). https://doi.org/10.1007/s13204-013-0206-0

    Article  Google Scholar 

  20. 20.

    M. Mukaidono, Regular ternary logic functions suitable for treating ambiguity. IEEE Trans. Comput. 35, 179–183 (1986)

    Article  Google Scholar 

  21. 21.

    K. Rahbari, S.A. Hosseini, Novel ternary D-Flip-Flap-Flop and counter based on successor and predecessor in nanotechnology. AEU Int. J. Electron. Commun. 109, 107–120 (2019)

    Article  Google Scholar 

  22. 22.

    A. Raychowdhury, K. Roy, Carbon nanotube electronics: design of high-performance and low-power digital circuits. IEEE Trans. Circuits Syst. I, Reg. Pap. 54(11), 2391–2401 (2007)

    Article  Google Scholar 

  23. 23.

    E. Roosta, S.A. Hosseini, Anovel multiplexer-based quaternary full adder in nanoelectronics. Circuits Syst. Signal Process. (2019). https://doi.org/10.1007/s00034-019-01039-8

    Article  Google Scholar 

  24. 24.

    M. Shahangian, S.A. Hosseini, S.H. Pishgar Komleh, Design of a multi-digit binary-to-ternary converter based on CNTFETs. Circuit Syst. Signal Process. 38(6), 2544–2563 (2019)

    Article  Google Scholar 

  25. 25.

    E. Shahrom, S.A. Hosseini, A new low power multiplexer based ternary multiplier using CNTFETs. Int. J. Electron. Commun. 93, 191–207 (2018)

    Article  Google Scholar 

  26. 26.

    F. Sharifi, M.H. Moaiyeri, K. Navi, A novel quaternary full adder cell based on nanotechnology. Mod. Educ. Comput. Sci. 7(3), 19–25 (2015)

    Article  Google Scholar 

  27. 27.

    K. Sridharan, S. Gurindagunta, V. Pudi, Efficient multiternary digit adder design in CNTFET technology. IEEE Trans. Nanotechnol. 12(3), 283–287 (2013)

    Article  Google Scholar 

  28. 28.

    B. Srinivasu, K. Sridharan, Low complexity multiternary digit multiplier design in CNTFET technology. IEEE Trans. 63, 753–757 (2016)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seied Ali Hosseini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghelichkhan, M., Hosseini, S.A. & Pishgar Komleh, S.H. Multi-digit Binary-to-Quaternary and Quaternary-to-Binary Converters and Their Applications in Nanoelectronics. Circuits Syst Signal Process 39, 1920–1942 (2020). https://doi.org/10.1007/s00034-019-01235-6

Download citation

Keywords

  • Multi-digit adder
  • Multi-digit binary-to-quaternary converter
  • Quaternary-to-binary converter
  • CNTFET