Skip to main content
Log in

Block-Based Noisy/Clean Classification of Images Using the Common Vector Approach

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a novel method is proposed to determine noisy blocks of an image. Three different threshold values for noisy/clean classification of the blocks of any image are determined by applying the common vector approach to the reference data set consisting of the clean samples of that image. The noise addressed in this paper is Gaussian noise with zero mean. By making a block-based noisy/clean classification of any image, it is possible to expose only the noisy blocks to the denoising process, rather than the entire image to denoising. When the first threshold value (Threshold 1) is considered for all peak signal-to-noise ratio (PSNR) values, more than 94% classification results are obtained for all 8 × 8 block-sized test images except images with 28–31 dB PSNR and more than 98.8% classification results are obtained for all 12 × 12 and 16 × 16 block-sized test images except images with 29-31 dB PSNR. Finally, popular image denoising algorithms are applied to the noisy images for comparison. It is observed that the PSNR values of noisy images are appreciably increased after the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. Amer, E. Dubois, Fast and reliable structure-oriented video noise estimation. IEEE Trans. Circuits Syst. Video Technol. 15(1), 113–118 (2005)

    Article  Google Scholar 

  2. I. Avcibaş, B. Sankur, K. Sayood, Statistical evaluation of image quality measures. J. Electron. Imaging 11(2), 206–223 (2002)

    Article  Google Scholar 

  3. K. Avni, Image denoising techniques: a brief survey. SIJ Trans. Comput. Sci. Eng. Appl. 3(2), 32–37 (2015)

    Google Scholar 

  4. S. Beckouche, J. Ma, Simultaneous dictionary learning and denoising for seismic data. Geophysics 79(3), A27–A31 (2014)

    Article  Google Scholar 

  5. S. Beckouche, J.L. Starck, J. Fadili, Astronomical image denoising using dictionary learning. Astron Astrophys 556(132), A132 (2013)

    Article  Google Scholar 

  6. A.C. Bovik, The essential guide to image processing (Academic Press, New York, 2009)

    Google Scholar 

  7. A. Buades, B. Coll, J.M. Morel, A non-local algorithm for image denoising, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 60–65 (2005)

  8. H. Cevikalp, M. Neamtu, M. Wilkes, Discriminative common vector method with kernels. IEEE Trans. Neural Netw. 17(6), 1550–1565 (2006)

    Article  Google Scholar 

  9. G. Chen, F. Zhu, P.A. Heng, An efficient statistical method for image noise level estimation, in IEEE International Conference on Computer Vision (ICCV), pp. 477–485 (2015)

  10. J.H. Chuah, H.Y. Khaw, F.C. Soon, C.O. Chow, Detection of Gaussian noise and its level using deep convolutional neural network, in IEEE Region 10 Conference (TENCON), pp. 2447–2450 (2017)

  11. A. De Stefano, P.R. White, W.B. Collis, Training methods for image noise level estimation on wavelet components. EURASIP J. Appl. Signal Process. 2004, 2400–2407 (2004)

    MathSciNet  MATH  Google Scholar 

  12. B. Deepa, M. Sumithra, Comparative analysis of noise removal techniques in MRI brain images, in IEEE International Conference on Computational Intelligence and Computing Research, pp. 1–4 (2015)

  13. A. Dehuri, S. Sanyena, R.R. Dash, M.N. Mohanty, A comparative analysis of filtering techniques on application in image denoising, in IEEE International Conference on Computer Graphics, Vision and Information Security, pp. 141–144 (2015)

  14. M. Elad, M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  15. A.M. Elmogy, E. Mahmood, F.A. Turki, Image noise detection and removal based on enhanced gridLOF algorithm. Int. J. Adv. Comput. Sci. Appl. 8(12), 454–462 (2017)

    Google Scholar 

  16. A.M. Eskicioglu, P.S. Fisher, Image quality measures and their performance. IEEE Trans. Commun. 43(12), 2959–2965 (1995)

    Article  Google Scholar 

  17. B.C. Gao, An operational method for estimating signal to noise ratios from data acquired with imaging spectrometers. Remote Sens. Environ. 43(1), 23–33 (1993)

    Article  Google Scholar 

  18. M.B. Gulmezoglu, V. Dzhafarov, A. Barkana, The common vector approach and its relation to principal component analysis. IEEE Trans. Speech Audio Process. 9(6), 655–662 (2001)

    Article  Google Scholar 

  19. M.B. Gülmezoğlu, V. Dzhafarov, R. Edizkan, A. Barkana, The common vector approach and its comparison with other subspace methods in case of sufficient data. Comput. Speech Lang. 21(2), 266–281 (2007)

    Article  Google Scholar 

  20. M.B. Gulmezoglu, V. Dzhafarov, M. Keskin, A. Barkana, A novel approach to isolated word recognition. IEEE Trans. Speech Audio Process. 7(6), 620–628 (1999)

    Article  Google Scholar 

  21. M. Hashemi, S. Beheshti, Adaptive noise variance estimation in BayesShrink. IEEE Signal Process. Lett. 17(1), 12–15 (2010)

    Article  Google Scholar 

  22. A. Hore, D. Ziou, Image quality metrics: PSNR vs. SSIM, in IEEE 20th International Conference on Pattern Recognition, pp. 2366–2369 (2010)

  23. F. Huang, B. Lan, J. Tao, Y. Chen, X. Tan, J. Feng, Y. Ma, A parallel nonlocal means algorithm for remote sensing image denoising on an intel xeon phi platform. IEEE Access 5, 8559–8567 (2017)

    Article  Google Scholar 

  24. S. Kaur, N. Singh, Image denoising techniques: a review. Int. J. Innov. Res. Comput. Commun. Eng. 2(6), 4578–4583 (2014)

    Google Scholar 

  25. T. Kaur, Image denoising algorithms and DWT: A review. J. Comput. Sci. Inf. Technol. 5(5), 6135–6137 (2014)

    Google Scholar 

  26. S.J. Ko, Y.H. Lee, Center weighted median filters and their applications to image enhancement. IEEE Trans. Circuits Syst. 38(9), 984–993 (1991)

    Article  Google Scholar 

  27. J.S. Lim, Two-Dimensional Signal and Image Processing (Prentice Hall, Englewood Cliffs, 1990)

    Google Scholar 

  28. W. Liu, W. Lin, Additive white Gaussian noise level estimation in SVD domain for images. IEEE Trans. Image Process. 22(3), 872–883 (2013)

    Article  MathSciNet  Google Scholar 

  29. X. Liu, M. Tanaka, M. Okutomi, Noise level estimation on using weak textured patches of a single noisy image, in 19th IEEE International Conference on Image Processing (ICIP), pp. 665–668 (2012)

  30. S. Manonmani, V.P. Lalitha, S. Rangaswamy, Survey on image denoising techniques. Int. J. Sci. Eng. Technol. Res. 5(9), 2278–7798 (2016)

    Google Scholar 

  31. G. Mikolajczak, J. Peksinski, Estimation of the variance of noise in digital images using a median filter, in IEEE 39th International Conference on Telecommunications and Signal Processing (TSP), pp. 489–492 (2016)

  32. K. Ozkan, E. Seke, Image denoising using common vector approach. IET Image Proc. 9(8), 709–715 (2015)

    Article  Google Scholar 

  33. G. Papari, N. Idowu, T. Varslot, Fast bilateral filtering for denoising large 3D images. IEEE Trans. Image Process. 26(1), 251–261 (2017)

    Article  MathSciNet  Google Scholar 

  34. S.M. Patil, R.R. Karhe, Advance method of detection and removal of noise from digital image. Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET) 2(12), 3172–3176 (2013)

    Google Scholar 

  35. K. Rank, M. Lendl, R. Unbehauen, Estimation of image noise variance. IEE Proc. Vis. Image Signal Process. 146(2), 80–84 (1999)

    Article  Google Scholar 

  36. F. Russo, Gaussian noise estimation in digital images using nonlinear sharpening and genetic optimization, in Instrumentation and Measurement Technology Conference Proceedings, pp. 1–5 (2007)

  37. H.J. Seo, P. Chatterjee, H. Takeda, P. Milanfar, A comparison of some state of the art image denoising methods, in Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers, pp. 518–522 (2007)

  38. K. Silpa, S.A. Mastani, Comparison of image quality metrics. Int. J. Eng. Res. Technol. 1(4), 1–5 (2012)

    Google Scholar 

  39. R. Singh, P. Singh, F. Parveen, Brief review on image denoising techniques. Int. J. Sci. Technol. Manag. 4(01), 2394 (2015)

    Google Scholar 

  40. J.L. Starck, F. Murtagh, Automatic noise estimation from the multiresolution support. Publ. Astron. Soc. Pac. 110(744), 193 (1998)

    Article  Google Scholar 

  41. J. Tian, L. Chen, Image noise estimation using a variation-adaptive evolutionary approach. IEEE Signal Process. Lett. 19(7), 395–398 (2012)

    Article  Google Scholar 

  42. C. Tomasi, R. Manduchi, Bilateral filtering for gray and color images, in Proceedings of the Sixth International Conference on Computer Vision, pp. 839–846 (1998)

  43. T. Tong, J. Caballero, K. Bhatia, D. Rueckert, Dictionary learning for medical image denoising, reconstruction and segmentation, in Machine Learning and Medical Imaging, pp. 153–181 (2016)

    Chapter  Google Scholar 

  44. E. Turajlić, V. Karahodzic, An adaptive scheme for X-ray medical image denoising using artificial neural networks and additive white Gaussian noise level estimation in SVD domain, in CMBEBIH, pp. 36–40 (2017)

    Google Scholar 

  45. A.K. Verma, B.S. Saini, Forward-backward processing technique for image denoising using FDZP 2D filter. J. Appl. Res. Technol. 15(6), 583–592 (2017)

    Article  Google Scholar 

  46. A. Wang, H. Bovik, R.H. Sheikh, E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  47. L. Zhang, W. Dong, D. Zhang, G. Shi, Two-stage image denoising by principal component analysis with local pixel grouping. Pattern Recogn. 43(4), 1531–1549 (2010)

    Article  Google Scholar 

  48. M. Zhang, B.K. Gunturk, A new image denoising framework based on bilateral filter. Proc. SPIE 6822, 68221B (2008)

    Article  Google Scholar 

  49. Y. Zhou, M. Lin, S. Xu, H. Zang, H. He, Q. Li, J. Guo, An image denoising algorithm for mixed noise combining nonlocal means filter and sparse representation technique. J. Vis. Commun. Image Represent. 41, 74–86 (2016)

    Article  Google Scholar 

  50. L. Zhu, E. Liu, J.H. McClellan, Seismic data denoising through multiscale and sparsity-promoting dictionary learning. Geophysics 80(6), WD45–WD57 (2015)

    Article  Google Scholar 

  51. L. Zhu, E. Liu, J.H. McClellan, Joint seismic data denoising and interpolation with double-sparsity dictionary learning. J. Geophys. Eng. 14(4), 802–810 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Basar Kalyoncu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalyoncu, H.B., Ergin, S. & Gulmezoglu, M.B. Block-Based Noisy/Clean Classification of Images Using the Common Vector Approach. Circuits Syst Signal Process 39, 1387–1418 (2020). https://doi.org/10.1007/s00034-019-01199-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01199-7

Keywords

Navigation