Skip to main content

Joint Parameter and Time-Delay Identification Algorithm and Its Convergence Analysis for Wiener Time-Delay Systems

Abstract

New developments for parameter and time-delay identification are presented for discrete nonlinear systems with delayed input. The proposed approach is based on overparametrization approach which involves subsuming the delay term into an extended numerator polynomial of the linear block of Wiener time-delay system. On this basis, the parameter identification problem can be then solved using recursive least squares-based optimization techniques and then, the delay is calculated directly based on the extended numerator polynomial identified: For a noise-free system, all extended numerator parameters are equal to zero. However in the noisy-output case, it is necessary to introduce an upper bound and the extended parameters whose values are smaller than a threshold level should be identified as zero. Then, the delay is determined as the first number of null extended parameter values. In addition, the convergence of the identified parameter vector is studied. The performances of the proposed identification algorithms are illustrated through simulation examples.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. A. Atitallah, S. Bedoui, K. Abderrahim, Identification of Wiener time delay systems based on hierarchical gradient approach, in 8th Vienna International Conference on Mathematical Modelling, Vienna, Austria, vol. 48(1), pp. 403–408 (2015)

  2. A. Atitallah, S. Bedoui, K. Abderrahim, An optimal two stage identification algorithm for discrete hammerstein time delay systems. IFAC-PapersOnLine 49(10), 19–24 (2016)

    MathSciNet  Article  Google Scholar 

  3. A. Atitallah, S. Bedoui, K. Abderrahim, System identification: parameter and time-delay estimation for Wiener nonlinear systems with delayed input. Trans. Inst. Meas. Control 40(3), 1035–1045 (2016)

    Article  Google Scholar 

  4. A. Atitallah, S. Bedoui, K. Abderrahim, New results on Wiener time delay system identification, in The 15th Annual European Control Conference ECC, pp. 1637–1642 (2016)

  5. A. Atitallah, S. Bedoui, K. Abderrahim, On convergence analysis of an identification algorithm for Hammerstein–Wiener systems with unknown time-delay. IFAC-Papers OnLine 50(1), 14052–14057 (2017)

    Article  Google Scholar 

  6. S.A. Billings, Nonlinear System Identifications: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains (Wiely, Hoboken, 2013)

    Book  Google Scholar 

  7. G. Bottegal, R. Castro-Garcia, J.A.K. Suykens, A two-experiment approach to Wiener system identification. Automatica 93, 282–289 (2018)

    MathSciNet  Article  Google Scholar 

  8. I. Dassios, Optimal solutions for non-consistent singular linear systems of fractional nabla difference equations. Circuits Syst. Signal Process. 34, 1769–1797 (2015)

    Article  Google Scholar 

  9. E. de Klerk, Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications (Springer, Berlin, 2002)

    Book  Google Scholar 

  10. F. Ding, X. Liu, M. Liu, The recursive least squares identification algorithm for a class of Wiener nonlinear systems. J. Franklin Inst. 353(7), 1518–1526 (2016)

    MathSciNet  Article  Google Scholar 

  11. C. Elisei-Iliescu, C. Paleologu, J. Benesty, C. Stanciu, C. Anghel, S. Ciochin\(\check{a}\), Recursive least-squares algorithms for the identification of low-rank systems. IEEE/ACM Trans. Audio Speech Lang. Process. 27(5), 903–918 (2019)

    Article  Google Scholar 

  12. R.K.H. Galvao, S. Hadjiloucas, A. Izhac, J.W. Bowen, Wiener-system subspace identification for mobile wireless mm-wave networks. IEEE Trans. Veh. Technol. 56(4), 1935–1948 (2007)

    Article  Google Scholar 

  13. F. Giri, E.W. Bai, Block-Oriented Nonlinear System Identification (Springer, Berlin, 2010)

    Book  Google Scholar 

  14. J. Guo, L.Y. Wang, G. Yin, Y. Zhao, J.F. Zhang, Identification of Wiener systems with quantized inputs and binary-valued output observations. Automatica 78, 280–286 (2017)

    MathSciNet  Article  Google Scholar 

  15. D.A. Harville, Matrix Algebra from a Statistician’s Perspective (Springer, Berlin, 2008)

    MATH  Google Scholar 

  16. Y. Hu, Q. Zhou, H. Yu, Z. Zhou, F. Ding, Two-stage generalized projection identification algorithms for stochastic systems. Circuits Syst. Signal Process. 38(6), 2846–2862 (2019). https://doi.org/10.1007/s00034-018-0996-0

    Article  Google Scholar 

  17. W. Huang, X. Li, S. Yang, Y. Qian, Dynamic flexibility analysis of chemical reaction systems with time delay: using a modified finite element collocation method. Chem. Eng. Res. Des. 89(10), 1938–1946 (2011)

    Article  Google Scholar 

  18. Y.L. Hsu, J.S. Wang, A Wiener-type recurrent neural network and its control strategy for nonlinear dynamic applications. J. Process Control 19, 942–953 (2009). https://doi.org/10.1016/j.jprocont.2008.12.002

    Article  Google Scholar 

  19. I.W. Hunter, M.J. Korenberg, The identification of nonlinear biological systems: Wiener and Hammerstein Cascade models. Biol. Cybern. 55(2–3), 135–144 (1986)

    MathSciNet  MATH  Google Scholar 

  20. R. Kanthasamy, H. Anwaruddin, S.K. Sinnadurai, A new approach to the identification of distillation column based on Hammerstein model. Model. Simul. Eng. 2014, 1–7 (2014). https://doi.org/10.1155/2014/813757

    Article  Google Scholar 

  21. J. Li, W.X. Zheng, J. Gu, L. Hua, A recursive identification algorithm for wiener nonlinear systems with linear state-space subsystem. Circuits Syst. Signal Process. 37(6), 2374–2393 (2018)

    MathSciNet  Article  Google Scholar 

  22. M. Liu, I. Dassios, F. Milano, On the stability analysis of systems of neutral delay differential equations. Circuits Syst. Signal Process. 38(4), 1639–1653 (2018)

    MathSciNet  Article  Google Scholar 

  23. W. Liu, W. Na, L. Zhu, J. Ma, Q.J. Zhang, A Wienertype dynamic neural network approach to the modeling of nonlinear microwave devices. IEEE Trans. Microw. Theory 65, 2043–2062 (2017)

    Article  Google Scholar 

  24. X. Luan, Q. Chen, P. Albertos, F. Liu, Conversion of SISO processes with multiple time-delays to single time-delay processes. J. Process Control 65, 84–90 (2018)

    Article  Google Scholar 

  25. F. Milano, I. Dassios, Small-signal stability analysis for non-index 1 Hessenberg form systems of delay differential-algebraic equations. IEEE Trans. Circuits Syst. I Regular Papers 63(9), 1521–1530 (2016)

    MathSciNet  Article  Google Scholar 

  26. T. Müller, M. Lauk, M. Reinhard, A. Hetzel, C.H. Lücking, J. Timmer, Estimation of delay times in biological systems. Ann. Bio. Eng. 431(11), 1423–1439 (2003)

    Article  Google Scholar 

  27. O. Nelles, Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models, Editions (Springer, Berlin, 2001)

    Book  Google Scholar 

  28. S.I. Niculescu, Delay Effects on Stability: A Robust Control Approach (Springer, Berlin, 2001)

    MATH  Google Scholar 

  29. S.J. Norquay, A. Palazoglu, J.A. Romagnoli, Application of Wiener model predictive control (WMPC) to a pH neutralization experiment. IEEE Trans. Control Syst. Technol 7(4), 437–445 (1999)

    Article  Google Scholar 

  30. A. O’Dwyer, Time delay estimation in signal processing applications: an overview, in IT & T Conference, October, pp. 1–6 (2002)

  31. P.S. Pal, R. Kar, D. Mandal, S.P. Ghoshal, Parametric identification with performance assessment of Wiener systems using brain storm optimization algorithm. Circuits Syst. Signal Process 36(8), 3143–3181 (2017)

    Article  Google Scholar 

  32. C. Reutenauer, M.P. Schotzenberger, A formula for the determinant of a sum of matrices. Lett. Math. Phys. 13, 299–302 (1987)

    MathSciNet  Article  Google Scholar 

  33. J.P. Richard, Time-delay systems: an overview of some recent advances and open problems. Automatica 39(10), 1667–1694 (2003)

    MathSciNet  Article  Google Scholar 

  34. M. Sbarciog, R. De Keyser, S. Cristea, C. De Prada, Nonlinear predictive control of processes with variable time delay. A temperature control case study, in 17th IEEE International Conference on Control Applications, pp. 1001–1006 (2008)

  35. M. Schoukens, K. Tiels, Identification of block-oriented nonlinear systems starting from linear approximations: a survey. Automatica 85, 272–292 (2017)

    MathSciNet  Article  Google Scholar 

  36. A. Srinivasan, P. Lakshmi, Wiener model based real-time identification and control of heat exchanger process. J. Automat. Syst. Eng. 2(1) (2008)

  37. X. Wang, J. Su, L. Zhang, Time-delay estimation for SISO systems using SW\(\sigma \). ISA Trans. 80, 43–53 (2018)

    Article  Google Scholar 

  38. L. Yu, T.S. Qiu, A.M. Song, A time delay estimation algorithm based on the weighted correntropy spectral density. Circuits Syst. Signal Process. 36(3), 1115–1128 (2017)

    Article  Google Scholar 

  39. L. Zhou, X. Li, F. Pan, Least-squares-based iterative identification algorithm for Wiener nonlinear systems. J. Appl. Math. 2013, 1–6 (2013). https://doi.org/10.1155/2013/565841

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the ministry of Higher Education and Scientific Research in Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asma Atitallah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Atitallah, A., Bedoui, S. & Abderrahim, K. Joint Parameter and Time-Delay Identification Algorithm and Its Convergence Analysis for Wiener Time-Delay Systems. Circuits Syst Signal Process 39, 199–222 (2020). https://doi.org/10.1007/s00034-019-01191-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01191-1

Keywords

  • Identification
  • Wiener systems
  • Time-delay estimation
  • Parameter estimations
  • Recursive least squares method
  • Convergence analysis