Skip to main content
Log in

Quantum-Dot Cellular Automata Technology for High-Speed High-Data-Rate Networks

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In today’s technology, optical networking plays a vital role in reducing data losses, thereby providing higher data rates between the transreceivers. The very large scale integration circuits in the modulator–demodulator (MODEM) usually fabricated using complementary metal oxide semiconductor (CMOS) technology have serious scaling limitations; hence, device scaling beyond 65 nm technology becomes highly challenging. Quantum-dot cellular automata (QCA) is one of the most promising nanotechnologies that enable areas of smaller size, i.e. 60% less design area than the CMOS technology, with capability to produce high speed by taking less cycles compared with the other CMOS designs to reduce scaling issues. The QCA-based designs are considered as the best alternative solutions to the transistor-based (CMOS) designs. This paper deals with the implementation of the logic gates NOT, AND, OR, NAND, NOR, XOR and XNOR using both CMOS and QCA technologies, while the QCA allows more possible design structures for each logic gate to enable optimization of the area. Finally, the proposed QCA-based logic gate design and CMOS-based designs are compared in terms of the design area, cell count and the speed of the designs. QCA designer 2.0.3 and virtuoso CADENCE Computer-Aided Design tools are used for carrying out the work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M.A. Amiri, S. Mirzakuchaki, M. Mahdavi, A5/1 Implementation in quantum cellular automata. Nanosci. Nanotechnol. 1(2), 58–63 (2011). https://doi.org/10.5923/j.nn.20110102.11

    Article  Google Scholar 

  2. P.Z. Ahmad, F. Ahmad, H. Ahmad Khan, A new F-shaped XOR gate and its implementations as novel adder circuits based quantum-dot cellular automata (QCA). IOSR J. Comput. Eng. 16(3), 110–117 (2014)

    Article  Google Scholar 

  3. A.L. Bahar, S. Waheed, N. Hossain, Md Asaduzzaman, A novel 3-input XOR function implementation in quantum dot-cellular automata with energy dissipation analysis (Alex. Eng. J., February, 2017)

    Google Scholar 

  4. S. Baskar, V.R. Dhulipala, Implementation of elliptical curve point multiplication over galois field (GF (p)) in 45 nanometer technology. Sens. Lett. 16(8), 632–641 (2018)

    Article  Google Scholar 

  5. S. Baskar, V.R. Dhulipala, Biomedical rehabilitation: data error detection and correction using two dimensional linear feedback shift register based cyclic redundancy check. J. Med. Imaging Health Inform. 8(4), 805–808 (2018)

    Article  Google Scholar 

  6. S. Baskar, V.R. Dhulipala, M-CRAFT-modified multiplier algorithm to reduce overhead in fault tolerance algorithm in wireless sensor networks. J. Comput. Theor. Nanosci. 15(4), 1395–1401 (2018)

    Article  Google Scholar 

  7. S. Baskar, Error recognition and correction enhanced decoding of hybrid codes for memory application, in 2014 2nd International Conference on Devices, Circuits and Systems (ICDCS) (IEEE, 2018), pp. 1–6

  8. M. Beigh, M. Mustafa, F. Ahmad, Performance evaluation of efficient XOR structures in quantum-dot cellular automata (QCA). J. Sci. Res. 4, 147–156 (2013)

    Google Scholar 

  9. E.P. Blair, C.S. Lent, Quantum-dot cellular automata: an architecture for molecular computing, in IEEE conference on Nano Electronics, QCA Designer, (2003), pp. 14–18. www.atips.ca/projects/qcadesigner

  10. A. Chaudhary, D.Z. Chen, X.S. Hu, M.T. Niemier, R. Ravichandran, K. Whitton, Fabricatable interconnect and molecular QCA circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 26(11), 1978–1991 (2007)

    Article  Google Scholar 

  11. J. Huang, M. Momenzabeh, M.B. Tahoori, F. Lombardi, Design and Characterization of an And-Or-Inverter (AOI) Gate for QCA Implementation. Dept of Electrical and Computer Engineering Northeastern University Boston, (2015)

  12. H.S. Jagarlamudi, M. Saha, P.K. Jagarlamudi, Quantum dot cellular automata based effective design of combinational and sequential logical structures. World Acad Sci. Eng. Technol. 60, 671–675 (2011)

    Google Scholar 

  13. Y.B. Kim, Challenges for nanoscale MOSFETs and emerging nano electronics. Trans. Electr. Electronic Mater. 11(3), 93–105 (2010). https://doi.org/10.4313/TEEM.2010.11.3.093

    Article  Google Scholar 

  14. K. Kim, K. Wu, R. Karri, The robust QCA adder designs using composable QCA building blocks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 26, 176–183 (2007)

    Article  Google Scholar 

  15. C.S. Lent, P.D. Tougaw, Lines of interacting quantum-dot cells: a binary wire. J. Appl. Phys. 74(10), 6227–6233 (1993)

    Article  Google Scholar 

  16. C.S. Lent, P.D. Tougaw, W. Porod, G.H. Bernstein, Quantum cellular automata. Nanotechnology 4(1), 49 (1993)

    Article  Google Scholar 

  17. C.S. Lent, P.D. Tougaw, A device architecture for computing with quantum dots. Proc. IEEE 85, 541–557 (1997)

    Article  Google Scholar 

  18. M. Liu, C.S. Lent, Bennett and Landauer clocking in quantum-dot cellular automata, in 10th International Workshop on Computational Electronics (IWCE-10) (2004), pp. 120–121. https://doi.org/10.1109/iwcse.2004.1407356

  19. A. Roohi, R.F. Demara, N. Khoshavi, Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectron. J. 46, 531–542 (2015)

    Article  Google Scholar 

  20. S.S. Roy, C. Mukherjee, S.Panda, A.K. Mukhopadhyay, B. Maji, Layered T Comparator design using quantum-dot cellular automata, in 2017 Devices for Integrated Circuit (DevIC), 23–24 March, Kalyani, India (2017).

  21. B. Sen, M. Dutta, M. Goswami, B.K. Sikdar, Modular design of testable reversible ALU by QCA multiplexer with increase in programmability. Microelectron. J. 45, 1522–1532 (2014)

    Article  Google Scholar 

  22. B. Sen, M. Dutta, R. Mukherjee, R.K. Nath, A.P. Sinha, B.K. Sikdar, Towards the design of hybrid QCA tiles targeting high fault tolerance. J. Comput. Electron. 15, 429–445 (2015). https://doi.org/10.1007/s10825-015-0760-7

    Article  Google Scholar 

  23. B. Sen, M. Goswami, S. Mazumda, B.K. Sikdar, Towards modular design of reliable quantum-dot cellular automata logic circuit using multiplexers. Comput. Electr. Eng. 45, 42–54 (2015)

    Article  Google Scholar 

  24. P.D. Tougaw, C.S. Lent, Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75, 1818–1825 (1995). https://doi.org/10.1063/1.356375

    Article  Google Scholar 

  25. K. Walus, T.J. Dysart, G.A. Jullien, R.A. Budiamn, QCA Designer: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3, 26–31 (2004)

    Article  Google Scholar 

  26. R. Zhang, K. Walus, W. Wang, G.A. Jullien, A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol. 3(4), 443–450 (2004). https://doi.org/10.1109/TNANO.2004.834177

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adepu Hariprasad.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hariprasad, A., Ijjada, S.R. Quantum-Dot Cellular Automata Technology for High-Speed High-Data-Rate Networks. Circuits Syst Signal Process 38, 5236–5252 (2019). https://doi.org/10.1007/s00034-019-01119-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01119-9

Keywords

Navigation