Skip to main content

Levin’s Transformation-based Continuous-Time Linear-Phase Selective Filters

Abstract

In this paper, authors derive a family of linear-phase selective filters based on Levin’s transformation. The approach consists of developing an approximation to the Laplace transform of impulse response of the chosen linear-phase selective filter using a sum of shifted and scaled causal splines. This approximation is then rationalized using Levin’s transformation to obtain a realizable medium-order transfer function which is then balanced and truncated to the required order. The magnitude and phase features of the filter derived are presented and discussed. It is shown that the closed-form solution obtained can act as a starting point for approximation methods that use local search routines.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    J.H. Ahlberg, E.N. Nilson, J.L. Walsh, in The Theory of Splines and Their Applications. Mathematics in Science and Engineering (Academic Press, New York, 1967)

  2. 2.

    H. Baher, M. O’Malley, Generalized approximation techniques for selective linear-phase digital and nonreciprocal lumped filters. IEEE Trans. Circuits Syst. 33(12), 1159–1169 (1986)

    Article  Google Scholar 

  3. 3.

    G.A. Baker, P.R. Graves-Morris, Padé Approximants, vol. 59 (Cambridge University Press, Cambridge, 1996)

    Book  Google Scholar 

  4. 4.

    D.B. Carvalho, R. Seara et al., Impulse response symmetry error for designing phase equalisers. Electron. Lett. 35(13), 1052–1054 (1999)

    Article  Google Scholar 

  5. 5.

    A.J. Casson, E. Rodriguez-Villegas, A 60 pw g c continuous wavelet transform circuit for portable eeg systems. IEEE J. Solid-State Circuits 46(6), 1406–1415 (2011)

    Article  Google Scholar 

  6. 6.

    I. Daubechies, Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41(7), 909–996 (1988)

    MathSciNet  Article  Google Scholar 

  7. 7.

    M.F. Fahmy, M.I. Sobhy, Selective constant delay filters with chebyshev passband amplitude response. Int. J. Circuit Theory Appl. 8(2), 190–195 (1980)

    Article  Google Scholar 

  8. 8.

    I.M. Filanovsky, P.N. Matkhanov, Synthesis of a pulse-forming reactance network shaping a quasi-rectangular delayed output pulse. IEEE Trans. Circuits Syst. II: Express Briefs 51(4), 190–194 (2004). https://doi.org/10.1109/TCSII.2004.824052. ISSN 1549-7747

    Article  Google Scholar 

  9. 9.

    I.M. Filanovsky, P.N. Matkhanov, Synthesis of reactance networks shaping a quasi-rectangular pulse. IEEE Trans. Circuits Syst. II: Express Briefs 52(5), 242–245 (2005). https://doi.org/10.1109/TCSII.2005.843593. ISSN 1549-7747

    Article  Google Scholar 

  10. 10.

    I.M. Filanovsky, P.N. Matkhanov, Synthesis of time delay networks approximating the pulse response described by an integer power of a sinusoid over its semi-period. Analog Integr. Circuits Signal Process. 28(1), 83–90 (2001)

    Article  Google Scholar 

  11. 11.

    H. Gutsche, Approximation of transfer functions for filters with equalized group-delay characteristics. Siemens Forschungs-und Entwicklungsberichte 2(5), 288–292 (1973)

    Google Scholar 

  12. 12.

    S.A.P. Haddad, S. Bagga, W. Serdijn et al., Log-domain wavelet bases. IEEE Trans. Circuits and Syst. I: Regul. Pap. 52(10), 2023–2032 (2005)

    Article  Google Scholar 

  13. 13.

    M. Hibino, Y. Ishizaki, H. Watanabe, Design of chebyshev filters with flat group-delay characteristics. IEEE Trans. Circuit Theory 15(4), 316–325 (1968)

    Article  Google Scholar 

  14. 14.

    X. Huang, S. Jing, Z. Wang, Y. Xu, Y. Zheng, Closed-form fir filter design based on convolution window spectrum interpolation. IEEE Trans. Signal Process. 64(5), 1173–1186 (2016). https://doi.org/10.1109/TSP.2015.2494869. ISSN 1053-587X

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    H. Kamada, N. Aoshima, Analog gabor transform filter with complex first order system, in Proceedings of the 36th SICE Annual Conference. International Session Papers SICE’97. (IEEE, 1997) pp. 925–930

  16. 16.

    J.M.H. Karel, S.A.P. Haddad, S. Hiseni, R.L. Westra, W. Serdijn, R.L.M. Peeters et al., Implementing wavelets in continuous-time analog circuits with dynamic range optimization. IEEE Trans. Circuits Syst. I: Regul. Pap. 59(2), 229–242 (2012)

    MathSciNet  Article  Google Scholar 

  17. 17.

    D. Levin, Development of non-linear transformations for improving convergence of sequences. Int. J. Compu. Math. 3(1–4), 371–388 (1973)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    V. Litovski, Synthesis of monotonic passband sharp cutoff filters with constant group delay response. IEEE Trans. Circuits Syst. 26(8), 597–602 (1979)

    Article  Google Scholar 

  19. 19.

    A. Ljutic, S. Djukic, M. Vucic, Time-domain synthesis of linear-phase selective filters, in 2010 Proceedings of the 33rd International Convention, MIPRO. 2010, pp. 165–170

  20. 20.

    G. Makkena, M.B. Srinivas, Nonlinear sequence transformation-based continuous-time wavelet filter approximation. Circuits Syst. Signal Process. 37(3), 965–983 (2018)

    MathSciNet  Article  Google Scholar 

  21. 21.

    G. Makkena, K.N. Abhilash, M.B. Srinivas, Gaussian filter approximation using Levin’s transformation for implementation in analog domain, in 2013 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia) (IEEE, 2013), pp. 204–207

  22. 22.

    J.P. Marmorat, M. Olivi, RARL2: a matlab based software for \(H^2\) rational approximation (2004)

  23. 23.

    S.V. Nikolić, G.Z. Stančić, S. Cvetković, Design of nearly linear-phase double notch digital filters with close notch frequencies. IET Signal Process. 12, 1107–1114 (2018)

    Article  Google Scholar 

  24. 24.

    L. Pernebo, L.M. Silverman, Model reduction via balanced state space representations. IEEE Trans. Autom. Control 27(2), 382–387 (1982)

    MathSciNet  Article  Google Scholar 

  25. 25.

    B. Rakovich, V. Litovski, Monotonic passband low-pass filters with Chebyshev stopband attenuation. IEEE Trans. Acoust. Speech Signal Process. 22(1), 39–44 (1974)

    Article  Google Scholar 

  26. 26.

    B.D. Rakovich, V.B. Litovski, Least-squares monotonic lowpass filters with sharp cutoff. Electron. Lett. 9(4), 75–76 (1973)

    Article  Google Scholar 

  27. 27.

    B.D. Rakovich, M.D. Radmanović, M.V. Popovich, Transfer functions of selective filters with equalised passband group delay response. IEE Proc. G (Electron. Circuits Syst.) 129, 11–18 (1982)

    Article  Google Scholar 

  28. 28.

    D. Rhodes, I.H. Zabalawi, Design of selective linear-phase filters with equiripple amplitude characteristics. IEEE Trans. Circuits Syst. 25(12), 989–1000 (1978)

    Article  Google Scholar 

  29. 29.

    S. Sadughi, H.K. Kim, An approximation procedure for selective linear phase filters. IEEE Trans. Circuits Syst. 34(8), 967–969 (1987)

    MathSciNet  Article  Google Scholar 

  30. 30.

    S. Sadughi, G. Martens, H. Kim, Selective linear-phase filters with controllable amplitude response. IEEE Trans. Circuits Syst. 32(8), 858–862 (1985)

    Article  Google Scholar 

  31. 31.

    K. Sainath, F. Teixeira, B. Donderici, Complex-valued levin transforms: a robust algorithm for field computation in anisotropic-layered media, in Antennas and Propagation Society International Symposium (APSURSI) (IEEE, 2014), pp. 2024–2025

  32. 32.

    K. Sainath, F.L. Teixeira, B. Donderici, Complex-plane generalization of scalar levin transforms: a robust, rapidly convergent method to compute potentials and fields in multi-layered media. J. Comput. Phys. 269, 403–422 (2014)

    MathSciNet  Article  Google Scholar 

  33. 33.

    M. Unser, T. Blu, Fractional splines and wavelets. SIAM Rev. 42(1), 43–67 (2000)

    MathSciNet  Article  Google Scholar 

  34. 34.

    M. Vucic, G. Molnar, Measure for phase linearity based on symmetry of time-domain response. Electron. Lett. 39(19), 1425–1426 (2003)

    Article  Google Scholar 

  35. 35.

    M. Vucic, G. Molnar, Time-domain synthesis of continuous-time systems based on second-order cone programming. IEEE Trans. Circuits Syst. I: Regul. Pap. 55(10), 3110–3118 (2008). https://doi.org/10.1109/TCSI.2008.925379. ISSN 1549-8328

    MathSciNet  Article  Google Scholar 

  36. 36.

    M. Vucic, G. Molnar, Equaliser design based on maximum of response to sinc pulse. Electron. Lett. 41(19), 1089–1090 (2005)

    Article  Google Scholar 

  37. 37.

    M. Vucic, G. Molnar, S. Djukic, Synthesis of linear-phase selective filters based on maximum of time-domain response, in IEEE International Symposium on Circuits and Systems (ISCAS) 2011, pp. 1648–1651. https://doi.org/10.1109/ISCAS.2011.5937896

  38. 38.

    E.J. Weniger, Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series. Comput. Phys. Rep. 10(5), 189–371 (1989)

    Article  Google Scholar 

  39. 39.

    H.S. Xu, J. Da Zhu, P. Dai, Novel acceleration methods for electromagnetic modeling of high-speed interconnects in distribution grids ASIC, in China International Conference on Electricity Distribution (CICED) (IEEE, 2016), pp. 1–5

  40. 40.

    H. Xu, K. Chen, J. Song, T. Kamgaing, Y.S. Mekonnen, A novel approach to accelerate spectral domain approach for shielded microstrip lines using the levin transformations and summation-by-parts. Radio Sci. 49(8), 573–582 (2014)

    Article  Google Scholar 

  41. 41.

    H. Xu, J. Song, T. Kamgaing, Y.S. Mekonnen, The extrapolation methods in acceleration of SDA for shielded microstrip lines, in Antennas and Propagation Society International Symposium (APSURSI) (IEEE 2014), pp. 2118–2119

  42. 42.

    H. Xu, S. Jain, J. Song, T. Kamgaing, Y.S. Mekonnen, Acceleration of spectral domain immitance approach for generalized multilayered shielded microstrips using the Levin’s transformation. IEEE Antennas Wirel. Propag. Lett. 14, 92–95 (2015)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Goutham Makkena.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Makkena, G., Srinivas, M.B. Levin’s Transformation-based Continuous-Time Linear-Phase Selective Filters. Circuits Syst Signal Process 38, 4905–4920 (2019). https://doi.org/10.1007/s00034-019-01105-1

Download citation

Keywords

  • Linear-phase selective filters
  • Continuous-time filters
  • Causal splines