Skip to main content
Log in

Novel Circuit Implementation Method for Pulse Signal Finite Rate of Innovation Sparse Sampling Based on an Improved Exponential Reproducing Kernel

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Finite rate of innovation sampling is a new signal sparse sampling method based on signal information freedom, which can considerably reduce the amount of sampling data. However, the researches on hardware circuit direct implementation of the method are at an initial stage. Therefore, a novel hardware circuit implementation method based on an exponential reproducing kernel (ERK) was developed with an improved ERK sparse sampling theoretical framework, which comprised an analog rational kernel (ARK) and digital rational kernel (DRK). The parameter constraint conditions and selection method for the improved ERK were analyzed. The performance of the ARK hardware circuit and the DRK algorithm were also examined. The designed sparse sampling system was applied to a pipeline flaw ultrasonic inspection by using the sparse sampling data of the ultrasonic signal obtained directly. The experimental results revealed that the proposed method could directly obtain the signal sparse sampling data and accurately reconstruct the initial signal parameters by using a spectrum estimation algorithm. Moreover, the signal sampling rate and the amount of sampling data were reduced considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L. Baboulaz, P.L. Dragotti, Exact feature extraction using finite rate of innovation principles with an application to image super-resolution. IEEE Trans. Image Process. 18(2), 281–298 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Chen, L. Wang, G. Chen, Data-aided timing synchronization for FM-DCSK UWB communication systems. IEEE Trans. Ind. Electron. 57(5), 1538–1545 (2010)

    Article  Google Scholar 

  3. S. Deslauriers-Gauthier, P. Marziliano, Sampling signals with a finite rate of innovation on the sphere. IEEE Trans. Signal Process. 61(18), 4552–4561 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. P.L. Dragotti, M. Vetterli, T. Blu, Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets strange-fix. IEEE Trans. Signal Process. 55(5), 1741–1757 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. N. Gehrig, P. L. Dragotti, Distributed sampling and compression of scenes with finite rate of innovation in camera sensor networks, in Data Compression Conference (2006), pp. 83–92

  6. G.H. Golub, P. Milanfar, J. Varah, A stable numerical method for inverting shape from moments. Soc. Ind. Appl. Math. 21(4), 1222–1243 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Z. Jiang, Research on Hardware Implementation Method of Ultrasonic Signal Sparse Sampling Based on Finite Rate of Innovation (Jiangsu University, Zhenjiang, 2017). (in Chinese)

    Google Scholar 

  8. J. Lin, F. Gao, Z. Luo, L. Zeng, High-resolution Lamb wave inspection in viscoelastic composite laminates. IEEE Trans. Ind. Electron. 63(11), 6989–6998 (2016)

    Article  Google Scholar 

  9. X. Li, A. Rueetschi, Y.C. Eldar, A scaglione GPS signal acquisition via compressive multichannel sampling. Phys. Commun. 5(2), 173–184 (2012)

    Article  Google Scholar 

  10. I. Markovsky, Structured low-rank approximation and its applications. Automatica 44(4), 891–909 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. G. C. F. M. R de Prony, Essai expérimental et analytique: sur les lois dela dilatabilitédes fluides élastiques et sur celles de la force expansive de la vapeur de l’eau et de la vapeur de l’alcool à différentes températures. Journal de l’école polytechnique (1975)

  12. S.P. Song, Z. Jiang, Quadrature demodulation-based circuit implementation of pulse stream for ultrasonic signal FRI sparse sampling. Meas. Sci. Technol. 28(3), 035005 (2017)

    Article  MathSciNet  Google Scholar 

  13. Y. Shi, L. Zeng, Signal Reconstruction algorithm of finite rate of innovation with matrix pencil and principal component analysis. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 100, 761–768 (2017)

    Article  Google Scholar 

  14. R. Tur, Y.C. Eldar, Z. Friedman, Innovation rate sampling of pulse streams with application to ultrasound imaging. IEEE Trans. Signal Process. 59(4), 1827–1842 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. J.A. Urigüen, T. Blu, P.L. Dragotti, FRI sampling with arbitrary kernels. IEEE Trans. Signal Process. 61(21), 5310–5323 (2013)

    Article  Google Scholar 

  16. M. Unser, Cardinal exponential splines: part II—think analog act digital. IEEE Trans. Signal Process. 53(4), 1439–1449 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Unser, T. Blu, Cardinal exponential splines: part I—theory and filtering algorithms. IEEE Trans. Signal Process. 53(4), 1425–1438 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Vetterli, P. Marziliano, T. Blu, Sampling signals with finite rate of innovation. IEEE Trans. Signal Process. 50(6), 1417–1428 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Y.J. Wang, M. Li, G.F. Liu, Sampling complex pulse streams with finite rate of innovation methods. J. Electron. Inf. Technol. 35(7), 1606–1611 (2013). (in Chinese)

    Article  Google Scholar 

  20. L. Xu, F. Ding, Recursive least squares and multi-innovation stochastic gradient parameter estimation methods for signal modeling. Circuits Syst. Signal Process. 36(4), 1735–1753 (2017)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant No. 51375217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoupeng Song.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, S., Yu, J. & Shen, J. Novel Circuit Implementation Method for Pulse Signal Finite Rate of Innovation Sparse Sampling Based on an Improved Exponential Reproducing Kernel. Circuits Syst Signal Process 38, 4683–4699 (2019). https://doi.org/10.1007/s00034-019-01076-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01076-3

Keywords

Navigation