Skip to main content
Log in

Analytical Review of Noise Margin in MVL: Clarification of a Deceptive Matter

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Multiple-valued logic (MVL) can lead to fewer interconnections inside and outside a chip. It can also increase computational performance. Despite these intrinsic advantages, MVL circuits are more prone to noise than the binary counterparts. Since the voltage range is divided into some narrow zones, it is essential to consider noise margins carefully when designing MVL circuits in order to make certain of their suitability and adequate reliability. Several ternary and quaternary inverters, whose voltage transfer characteristics (VTC) suffer from reduced noise margins, have been presented in the literature. This shows that further clarification is definitely required. In this paper, the correct VTC curve of a ternary inverter with proper attributes is clarified. The explanations go beyond ternary logic to cover quaternary and other MVL systems as well. Then, the paper undertakes a review of noise margin and static noise margin measurements for some well-known ternary and quaternary inverters. Besides, the effects of process variation on noise margin are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. E. Abiri, A. Darabi, A novel design of low power and high read stability ternary SRAM (T-SRAM), memory based on the modified gate diffusion input (m-GDI) method in nanotechnology. Microelectron. J. 58, 44–59 (2016)

    Article  Google Scholar 

  2. E. Abiri, A. Darabi, S. Salem, Design of multiple-valued logic gates using gate-diffusion input for image processing applications. Comput. Electr. Eng. 69, 142–157 (2018)

    Article  Google Scholar 

  3. M. Alioto, G. Palumbo, Current-Mode Digital Circuits: Model and Design of Bipolar and MOS Current-Mode Logic (Springer, Dordrecht, 2005), pp. 37–46

    Google Scholar 

  4. C.G. Almudever, A. Rubio, Variability and reliability analysis of CNFET technology: impact of manufacturing imperfections. Microelectron. Reliab. 55, 358–366 (2015)

    Article  Google Scholar 

  5. B. Alorda, G. Torrens, S. Bota, J. Segura, Adaptive static and dynamic noise margin improvement in minimum-sized 6T-SRAM cells. Microelectron. Reliab. 54, 2613–2620 (2014)

    Article  Google Scholar 

  6. V. Beiu, M. Tache, Statistical analysis of static noise margins, in European Conference on Circuit Theory and Design (2015), pp. 1–4

  7. G. Cho, F. Lombardi, Design and process variation analysis of CNTFET-based ternary memory cells. Integr. VLSI J. 54, 97–108 (2016)

    Article  Google Scholar 

  8. J. Deng, Device modeling and circuit performance evaluation for nanoscale devices: silicon technology beyond 45 nm node and carbon nanotube field effect transistors. Ph.D. Thesis, Stanford University (2007)

  9. E. Dubrova, Multiple-valued logic in VLSI: challenges and opportunities, in Proceeding of the NORCHIP’99 (1999), pp. 340–350

  10. S.A. Ebrahimi, M.R. Reshadinezhad, A. Bohlooli, M. Shahsavari, Efficient CNTFET-based design of quaternary logic gates and arithmetic circuits. Microelectron. J. 53, 156–166 (2016)

    Article  Google Scholar 

  11. R. Faghih Mirzaee, T. Nikoubin, K. Navi, O. Hashemipour, Differential cascode voltage switch (DCVS) strategies by CNTFET technology for standard ternary logic. Microelectron. J. 44, 1238–1250 (2013)

    Article  Google Scholar 

  12. S. Farhana, M.F. Noordin, Technology and performance: carbon nanotube (CNT) field effect transistor (FET) in VLSI circuit design, in IEEE 7th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (2016), pp. 1–4

  13. P.A. Gowrisankar, Design of multi-valued ternary logic gates based on emerging sub-32 nm technology, in 3rd International Conference on Science Technology Engineering & Management (2017), pp. 1023–1031

  14. J.R. Hauser, Noise margin criteria for digital logic circuits. IEEE Trans. Educ. 36, 363–368 (1993)

    Article  Google Scholar 

  15. H. Inokawa, A. Fujiwara, Y. Takahashi, A multiple-valued logic with merged single-electron and MOS transistors, in Proceedings of the International Electron Devices Meeting (2001), pp. 7.2.1–7.2.4

  16. International Symposium on Multiple-Valued Logic. https://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000485

  17. ITRS, Albany, NY, USA, 2013, http://www.itrs2.net

  18. S. Karmakar, A. Chandy, F.C. Jain, Design of ternary logic combinational circuits based on quantum dot gate FETs. IEEE Trans. Very Large Scale Integr. Syst. 21, 793–806 (2013)

    Article  Google Scholar 

  19. K. Kuhn, C. Kenyon, A. Kornfeld, M. Liu, A. Maheshwari, W. Shih, S. Sivakumar, G. Taylor, P. Vandervoorn, K. Zawadzki, Managing process variation in Intel’s 45 nm CMOS technology. Intel Technol. J. 12, 93–109 (2008)

    Google Scholar 

  20. K.F. Lee, Y. Li, T.Y. Li, Z.C. Su, C.H. Hwang, Device and circuit level suppression techniques for random-dopant-induced static noise margin fluctuation in 16-nm-gate SRAM cell. Microelectron. Reliab. 50, 547–651 (2010)

    Article  Google Scholar 

  21. G. Li, P. Wang, Y. Kang, Y. Zhang, A low standby-power fast carbon nanotube ternary SRAM cell with improved stability. J. Semicond. 39, 1–7 (2018)

    Google Scholar 

  22. J. Liang, L. Chen, J. Han, F. Lombardi, Design and evaluation of multiple valued logic gates using pseudo N-type carbon nanotube FETs. IEEE Trans. Nanotechnol. 13, 695–708 (2014)

    Article  Google Scholar 

  23. S. Lin, Y. Kim, F. Lombardi, CNTFET-based design of ternary logic gates and arithmetic circuits. IEEE Trans. Nanotechnol. 10, 217–225 (2011)

    Article  Google Scholar 

  24. S. Lin, Y.-B. Kim, F. Lombardi, Design of a ternary memory cell using CNTFETs. IEEE Trans. Nanotechnol. 11, 1019–1025 (2012)

    Article  Google Scholar 

  25. M. Maleknejad, R. Faghih Mirzaee, K. Navi, O. Hashemipour, Multi-Vt ternary circuits by carbon nanotube field effect transistor technology for low-voltage and low-power applications. J. Comput. Theor. Nanosci. 11, 110–118 (2014)

    Article  Google Scholar 

  26. R. Mariani, F. Pessolano, R. Saletti, A new CMOS ternary logic design for low-power low-voltage circuits, in Proceedings of the 7th International Workshop on Power, Timing, Modeling, Optimization, and Simulation (1997), pp. 173–185

  27. R. Marani, A.G. Perri, The next generation of FETs: CNTFETs. Int. J. Adv. Eng. Technol. 8, 854–866 (2015)

    Google Scholar 

  28. M.H. Moaiyeri, A. Doostaregan, K. Navi, Design of energy-efficient and robust ternary circuits for nanotechnology. IET Circuits Devices Syst. 5, 285–296 (2011)

    Article  MATH  Google Scholar 

  29. M.H. Moaiyeri, K. Navi, O. Hashemipour, Design and evaluation of CNFET-based quaternary circuits. Circuits Syst Signal Process. 31, 1631–1652 (2012)

    Article  MathSciNet  Google Scholar 

  30. M.H. Moaiyeri, H. Akbari, M. Moghaddam, An ultra-low-power and robust ternary static random access memory cell based on carbon nanotube FETs. J. Nanoelectron. Optoelectron. 13, 617–627 (2018)

    Article  Google Scholar 

  31. H. Nan, K. Choi, Novel ternary logic design based on CNFET, in International SoC Design Conferenece (2010), pp. 115–118

  32. M. Rana, R. Canal, E. Amat, A. Rubio, Statistical analysis and comparison of 2T and 3T1D e-DRAM minimum energy operation. IEEE Trans. Device Mater. Reliab. 17, 172–182 (2017)

    Article  Google Scholar 

  33. A. Raychowdhury, K. Roy, Carbon-nanotube-based voltage-mode multiple-valued logic design. IEEE Trans. Nanotechnol. 4, 168–179 (2005)

    Article  Google Scholar 

  34. H. Samadi, A. Shahhoseini, F. Aghaei-liavali, A new method on designing and simulating CNTFET_based ternary gates and arithmetic circuits. Microelectron. J. 63, 41–48 (2017)

    Article  Google Scholar 

  35. H. Shahidipour, A. Ahmadi, K. Maharatna, Effect of variability in SWCNT-based logic gates, in Proceedings of the International Symposium Integrated Circuits (2009), pp. 252–255

  36. F. Sharifi, M.H. Moaiyeri, K. Navi, N. Bagherzadeh, Quaternary full adder cells based on carbon nanotube FETs. J. Comput. Electron. 14, 762–772 (2015)

    Article  Google Scholar 

  37. F. Sharifi, M.H. Moaiyeri, K. Navi, N. Bagherzadeh, Robust and energy-efficient carbon nanotube FET-based MVL gates. Microelectron. J. 46, 1333–1342 (2015)

    Article  Google Scholar 

  38. S. Shin, E. Jang, J.W. Jeong, K.R. Kim, CMOS-compatible ternary device platform for physical synthesis of multi-valued logic circuits, in 47th International Symposium Multiple-Valued Logic (2017), pp. 284–289

  39. S. Shreya, S. Sourav, Design, analysis and comparison between CNTFET based ternary SRAM cell and PCRAM cell, in International Conference on Communication, Control and Intelligent Systems (2015), pp. 347–351

  40. E. Sipos, R. Groza, L.N. Ivanciu, Power consumption and noise margin comparison between simple ternary inverter and binary inverter. Acta Tech. Napoc. Electron. Telecommun. 58, 13–16 (2017)

    Google Scholar 

  41. Stanford CNFET Model, https://nano.stanford.edu/stanford-cnfet-model

  42. S. Tabrizchi, F. Sharifi, A.-H. Badawy, Z.M. Saifullah, Enabling energy-efficient ternary logic gates using CNFETs, in IEEE 17th International Conference on Nanotechnology (2017), pp. 542–547

  43. K. You, K. Nepal, Design of a ternary static memory cell using carbon nanotube-based transistors. IET Micro Nano Lett. 6, 381–385 (2011)

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Ms. Sharbaf Ebrahimi for her language editing which has greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Faghih Mirzaee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takbiri, M., Faghih Mirzaee, R. & Navi, K. Analytical Review of Noise Margin in MVL: Clarification of a Deceptive Matter. Circuits Syst Signal Process 38, 4280–4301 (2019). https://doi.org/10.1007/s00034-019-01063-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01063-8

Keywords

Navigation