Skip to main content
Log in

Design and Analysis of Low-Power Adiabatic Logic Circuits by Using CNTFET Technology

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Miniaturization of semiconductor industries paved the way for rapid development in the field of digital electronics. In DSM range, power dissipation has become a major concern due to leakage currents; hence, researchers are continuously trying to evolve ways to mitigate this. Out of many such ways the use of carbon nanotube technology is a promising way to design low-power circuits, as carbon has a property of providing variable threshold voltage (VTH) in N-type transistors. Here simulation results confirm that CNTFET has better performance than MOS and FinFET technologies in low-power world. In this paper existing and proposed adiabatic logic is implemented by CNTFET technology at 32 nm in HSPICE by using Predictive Technology Model (PTM). Comparison of simulation results shows that proposed CNTFET-based ON–OFF-DCDB-PFAL adiabatic logic saves average power 94.33% in Buffer/NOT, 93.13% in NAND/AND, 93.14% in NOR/OR, 91.76% in XOR/XNOR when compared with 2N2N2P circuit at 10 MHz frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Agrawal, T.K. Gupta, A.K. Dadoria, Ultra low power adiabatic logic using diode connected DC biased PFAL logic. Adv. Electr. Electron. Eng. 14(2), 122–130 (2016)

    Google Scholar 

  2. R.H. Baughman, A.A. Zakhidov, W.A. De Heer, Carbon nanotubes the route toward applications. Science 297(5582), 787–792 (2002). https://doi.org/10.1126/science.1060928

    Article  Google Scholar 

  3. P. Bhati, N.Z. Rizvi, Adiabatic logic: an alternative approach to low power application circuits. Int. Conf. Electr. Electron. Optim. Tech. (2016). https://doi.org/10.1109/iceeot.2016.7755521

    Google Scholar 

  4. A. Blotti, S.D. Pascoli, R. Saletti, Simple model for positive feedback adiabatic logic power consumption estimation. Electron. Lett. 36(2), 116–118 (2000)

    Article  Google Scholar 

  5. M. Chanda, De Jain, C.K. Sarkar, Implementation of subthreshold adiabatic logic for ultralow-power application. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 23(12), 2782–2790 (2015)

    Article  Google Scholar 

  6. A.P. Chandrakasan, S. Sheng, R.W. Broderson, Low power CMOS digital design. IEEE J. Solid-State Circuits 27(4), 473–484 (1992)

    Article  Google Scholar 

  7. P. Chandrakasan, R.W. Broderson, Minimizing power consumption in digital CMOS circuits. Proc. IEEE 83(4), 498–523 (1995)

    Article  Google Scholar 

  8. A.K. Dadoria, K. Khare, T.K. Gupta, N. Khare, Integrating sleep and pass transistor logic for leakage power reduction in FinFET circuits. J. Comput. Electron. 16(3), 867–874 (2017)

    Article  Google Scholar 

  9. S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, New York, 2005)

    Book  MATH  Google Scholar 

  10. J. Deng, H.S.P. Wong, A compact spice model for carbon-nanotube field-effect transistors including non-idealities and its application—part 1: model of the intrinsic channel region. IEEE Trans. Electron Devices 54(12), 3186–3194 (2007)

    Article  Google Scholar 

  11. A.D. Franklin, M. Luisier et al., Sub-10 nm carbon nanotube transistor. Nano Lett. 12(2), 758–762 (2012)

    Article  Google Scholar 

  12. S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    Article  Google Scholar 

  13. N. Jeanniot, A. Todri-Sanial, Investigation of the power-clock network impact on adiabatic logic, Proc. IEEE, (2016). https://doi.org/10.1109/SaPIW.2016.7496270

  14. J.S. Kramer et al., 2nd order adiabatic computing with 2N–2N and 2N–2N2P logic circuits, in Proceedings of International Symposium Low Power Design, (1995), pp. 191–196

  15. S.P. Kushawaha, T.N. Sasamal, Modified positive feedback adiabatic logic for ultra low power VLSI, in IEEE International Conference on Computer, Communication and Control, (2015)

  16. S. Lin, Y.B. Kim, F. Lombardi, Design of a ternary memory cell using CNTFET. IEEE Trans. Nanotechnol. 11(5), 1019–1025 (2012)

    Article  Google Scholar 

  17. L. Nan, C. Xiao, Xin et al., Low power adiabatic logic based on FinFETs. Sci China 57, 1–13 (2014)

    Google Scholar 

  18. K.R. Pasupathy, B. Bindu, Low power, high speed carbon nanotube FET based level shifters for multi-VDD systems-On-Chips. Microelectron. J. 46, 1269–1274 (2015)

    Article  Google Scholar 

  19. M. Radosavljevic, S. Heinze, J. Tersoff, Ph Avouris, Drain voltage scaling in carbon nanotube transistors. Appl. Phys. Lett. 83(12), 2435–2437 (2003)

    Article  Google Scholar 

  20. K. Roy et al., Leakage current mechanisms and leakage reduction techniques in deep-sub micrometer CMOS circuits. Proc. IEEE 91(2), 305–327 (2003). https://doi.org/10.1109/JPROC.2002.808156

    Article  Google Scholar 

  21. K. Roy, S.C. Prasad, Low-Power CMOS VLSI Circuit Design (Wiley, New York, 2000)

    Google Scholar 

  22. P. Sheokand, V. Bhargave, S. Pandey, J. Kaur, A new energy efficient two phase adiabatic logic for low power VLSI applications, in International Conference on Signal Processing, Computing and Control, (2015)

  23. D. Shingal, A. Saxena, A. Noor, Adiabatic logic circuits: a retrospect. MIT Int. J. Electron. Commun. Eng. 3(2), 108–114 (2013)

    Google Scholar 

  24. Y. Sun, V. Kursun, N-type carbon-nanotube MOSFET device profile optimization for very large scale integration. Trans. Electr. Electron. Mater. 12(2), 43–50 (2011)

    Article  Google Scholar 

  25. Y. Sun, V. Kursun, N-type carbon-nanotube MOSFET device profile optimization for very large scale integration. Trans. Electr. Electron. Mater. 12(2), 43–50 (2011)

    Article  Google Scholar 

  26. P Teichmann (2012) Fundamentals of adiabatic logic, in Adiabatic Logic, 34 (Springer, Dordrecht, 2012), Doi https://doi.org/10.1007/978-94-007-2345-0_2

  27. A. Vetuli, S.D. Pascoli, L.M. Reyneri, Positive feedback in adiabatic logic. Electron. Lett. 32(20), 1867–1869 (1996)

    Article  Google Scholar 

  28. H.S.P. Wong, D. Akinwande, Carbon Nanotube and Graphene Device Physics (Cambridge University Press, New York, 2010). https://doi.org/10.1017/CBO9780511778124

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kumar Dadoria.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadoria, A.K., Khare, K. Design and Analysis of Low-Power Adiabatic Logic Circuits by Using CNTFET Technology. Circuits Syst Signal Process 38, 4338–4356 (2019). https://doi.org/10.1007/s00034-019-01059-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01059-4

Keywords

Navigation