Advertisement

Circuits, Systems, and Signal Processing

, Volume 38, Issue 6, pp 2607–2629 | Cite as

Focusing Multireceiver SAS Data Based on the Fourth-Order Legendre Expansion

  • Xuebo ZhangEmail author
  • Peixuan Yang
  • Xuntao Dai
Article
  • 48 Downloads

Abstract

Using Legendre polynomials and the derivation method of the implicit function, this paper proposes a range-Doppler algorithm for multireceiver synthetic aperture sonar. Based on Legendre polynomials, the two-way slant range is first expanded into a power series with respect to the slow time. Then, the derivation method of the implicit function is exploited to deduce the point of stationary phase and point target reference spectrum (PTRS). Based on this PTRS, the paper presents an imaging algorithm, which uses the range-dependent sub-block processing method to cancel the space-variant coupling between the range and azimuth dimensions. Simulation results and real data processing are presented to validate the proposed method.

Keywords

Synthetic aperture sonar Legendre polynomials Range error Sub-block Imaging algorithm 

Notes

Acknowledgements

This work is supported financially by the National Natural Science Foundation of China (61601473) and the National Key Laboratory Foundation of China (9140C290401150C29132). The authors thank LetPub (www.LetPub.com) for its linguistic assistance during the preparation of this manuscript.

References

  1. 1.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (National Bureau of Standards, New York, 1972)zbMATHGoogle Scholar
  2. 2.
    J. Akhtar, Removal of range ambiguities with orthogonal block coding techniques. Circuits Syst. Signal Process. 29(2), 311–330 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    M.R. Azimi-Sadjadi, M. Klausner, J. Kopacz, Detection of underwater targets using a subspace-based method with learning. IEEE J. Ocean. Eng. 42(4), 869–879 (2017)CrossRefGoogle Scholar
  4. 4.
    A.B. Bellettini, M.A. Pinto, Theoretical accuracy of synthetic aperture sonar micronavigation using a displaced phase-center antenna. IEEE J. Ocean. Eng. 27(4), 780–789 (2002)CrossRefGoogle Scholar
  5. 5.
    D. Bi, Y. Xie, Y.R. Zheng, Synthetic aperture radar imaging using basis selection compressed sensing. Circuits Syst. Signal Process. 34(8), 2561–2576 (2015)CrossRefGoogle Scholar
  6. 6.
    W.W. Bonifant, M.A. Richards, J.H. McClellan, Interferometric height estimation of the seafloor via synthetic aperture sonar in the presence of motion errors. IEE Proc. Radar Sonar Navig. 147(6), 322–330 (2000)CrossRefGoogle Scholar
  7. 7.
    S. Chen, H. Wang, F. Xu, Y. Jin, Target classification using the deep convolutional networks for SAR images. IEEE Trans. Geosci. Remote Sens. 54(8), 4806–4817 (2016)CrossRefGoogle Scholar
  8. 8.
    I.G. Cumming, F.H. Wong, Digital Processing of Synthetic Aperture Radar: Algorithms and Implementation (Artech House, Norwood, 2005)Google Scholar
  9. 9.
    A. Gaibel, A. Boag, Back-projection SAR imaging using FFT, in European Radar Conference (London, UK, 2016), pp. 69–72Google Scholar
  10. 10.
    P.T. Gough, M.P. Hayes, D.R. Wilkinson, An efficient image reconstruction algorithm for a multiple hydrophone array synthetic aperture sonar, in European Conference on Underwater Acoustics (Lyon, France, 2000), pp. 395–400Google Scholar
  11. 11.
    P.E. Hagen, R.E. Hansen, Area coverage rate of synthetic aperture sonars, in MTS/IEEE Oceans Conference (Aberdeen, UK, 2007), pp. 1–5Google Scholar
  12. 12.
    A.J. Hunter, S. Dugelay, W.L.J. Fox, Repeat-pass synthetic aperture sonar micronavigation using redundant phase center arrays. IEEE J. Ocean. Eng. 41(4), 820–830 (2016)CrossRefGoogle Scholar
  13. 13.
    P. Imperatore, A. Pepe, R. Lanari, Spaceborne synthetic aperture radar data focusing on multicore-based architectures. IEEE Trans. Geosci. Remote Sens. 54(8), 4712–4731 (2016)CrossRefGoogle Scholar
  14. 14.
    X. K. Jiang, C. Sun, J. Feng, A novel image reconstruction algorithm for synthetic aperture sonar with single transmitter and multiple receiver configuration, in MTS/IEEE Oceans Conference (Kobe, Japan, 2004), pp. 1940–1944Google Scholar
  15. 15.
    K.A. Johnson, M.P. Hayes, P.T. Gough, A method for estimating the sub-wavelength sway of a sonar towfish. IEEE J. Ocean. Eng. 20(4), 258–267 (1995)CrossRefGoogle Scholar
  16. 16.
    G. Krieger, N. Gebert, A. Moreira, Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling. IEEE Geosci. Remote Sens. Lett. 1(4), 260–264 (2004)CrossRefGoogle Scholar
  17. 17.
    J. Mckay, V. Monga, R.G. Raj, Robust sonar ATR through Bayesian pose-corrected sparse classification. IEEE Trans. Geosci. Remote Sens. 55(10), 5563–5576 (2017)CrossRefGoogle Scholar
  18. 18.
    T.G. Michael, B. Marchand, J.D. Tucker, T.M. Marston, D.D. Sternlicht, M.R. Azimi-Sadjadi, Williams, Image-based automated change detection for synthetic aperture sonar by multistage coregistration and canonical correlation analysis. IEEE J. Ocean. Eng. 41(3), 592–612 (2016)Google Scholar
  19. 19.
    Y.L. Neo, F. Wong, I.G. Cumming, Processing of azimuth-invariant bistatic SAR data using the range Doppler algorithm. IEEE Trans. Geosci. Remote Sens. 46(1), 14–21 (2008)CrossRefGoogle Scholar
  20. 20.
    Y. Pailhas, Y. Petillot, K. Brown, B. Mulgrew, Spatially distributed MIMO sonar systems: principles and capabilities. IEEE J. Ocean. Eng. 42(3), 738–751 (2017)CrossRefGoogle Scholar
  21. 21.
    A. Papoulis, Generalized sampling expansion. IEEE Trans. Circuits Syst. CAS-24(11), 652–654 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    K.D. Rolt, H. Schmidt, Azimuthal ambiguities in synthetic aperture sonar and synthetic aperture radar imagery. IEEE J. Ocean. Eng. 17(1), 73–79 (1992)CrossRefGoogle Scholar
  23. 23.
    S.A.V. Synnes, A.J. Hunter, R.E. Hansen, T.O. Sæbø, H.J. Callow, R.V. Vossen, A. Austeng, Wideband synthetic aperture sonar backprojection with maximization of wave number domain support. IEEE J. Ocean. Eng. 42(4), 880–891 (2017)CrossRefGoogle Scholar
  24. 24.
    F. Wang, X. Li, A new method of deriving spectrum for bistatic SAR processing. IEEE Geosci. Remote Sens. Lett. 7(3), 483–486 (2010)CrossRefGoogle Scholar
  25. 25.
    V.T. Wang, M.P. Hayes, Synthetic aperture sonar track registration using SIFT image correspondences. IEEE J. Ocean. Eng. 42(4), 901–903 (2017)CrossRefGoogle Scholar
  26. 26.
    W. Wang, R. Wang, Y. Deng, W. Xu, L. Hou, Improved digital beam-forming approach with scaling function for range multi-channel synthetic aperture radar system. IET Radar Sonar Navig. 10(2), 379–385 (2016)CrossRefGoogle Scholar
  27. 27.
    T. Xiong, M.D. Xing, Y. Wang, R. Guo, J.L. Sheng, Z. Bao, Using derivatives of an implicit function to obtain the stationary phase of the two- dimensional spectrum for bistatic SAR imaging. IEEE Geosci. Remote Sens. Lett. 8(6), 1165–1169 (2011)CrossRefGoogle Scholar
  28. 28.
    H. Yang, J. Tang, Q. Li, X. Liu, Processing of non-uniform azimuth sampling in multiple-receiver synthetic aperture sonar image, in MTS/IEEE Oceans Conference (Aberdeen, UK, 2007), pp. 1–4Google Scholar
  29. 29.
    H. Zhang, Y. Deng, R. Wang, N. Li, S. Zhao, F. Hong, L. Wu, O. Loffeld, Spaceborne/stationary bistatic SAR imaging with TerraSAR-X as an illuminator in staring-spotlight mode. IEEE Trans. Geosci. Remote Sens. 54(9), 5203–5216 (2016)CrossRefGoogle Scholar
  30. 30.
    X. Zhang, X. Chen, W. Qu, Influence of the stop-and-hop assumption on synthetic aperture sonar imagery, in IEEE International Conference on Communication Technology (Chengdu, China, 2017), pp. 1601–1607Google Scholar
  31. 31.
    X. Zhang, J. Tang, F. Wang, S. Bai, D. Liu, Accurate back projection imaging algorithm for multireceiver SAS in engineering application. J. Nav. Univ. Eng. 26(2), 20–24 (2014)Google Scholar
  32. 32.
    X. Zhang, J. Tang, H. Zhong, Multireceiver correction for the chirp scaling algorithm in synthetic aperture sonar. IEEE J. Ocean. Eng. 39(3), 472–481 (2014)CrossRefGoogle Scholar
  33. 33.
    H. Zhu, C. Li, L. Zhang, J. Shen, River channel extraction from SAR images by combing gray and morphological features. Circuits Syst. Signal Process. 34(7), 2271–2286 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Underwater AcousticsZhanjiangPeople’s Republic of China
  2. 2.The Wisdom EducationZhanjiangPeople’s Republic of China
  3. 3.No. 10 Institute, Electronics Technology Group CorporationChengduPeople’s Republic of China

Personalised recommendations